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Abstract

This presentation describes the state of transonic flow simulation using nonlinear potential methods for external-
aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis
on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation

assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave
capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations,
including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration

scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout
the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommenda-
tions for future work. Overall, nonlinear potential solvers are efficient, highly developed and routinely used in the
aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past three decades the field of computational

aerodynamics has evolved from a curious art barely

capable of predicting the inviscid flow over simple two-

dimensional shapes, such as airfoils, to the relatively'

mature current capability, which is capable of predicting

high-Reynolds-number viscous flows about complex

three-dimensional shapes, including nearly complete air-

craft. The development of this scientific/engineering field

has been paced by many milestones in a variety of areas,

including computational hardware, system software,

computing environments, numerical algorithms, con>

puter graphics, geometric modeling, flow solver algo-

rithms, etc. indeed, many volumes could be written in

describing the development of computational aerody-

namics. The purpose of this review is to describe a small,

and yet very important aspect of computational aerody-

namics, that portion associated with nonlinear potential

formulations. This area is important because numerical

simulations based on nonlinear potential equations pro-

vide quantitative answers to aerodynamic questions in

a small amount of wall clock time. For aircraft design,

reducing wall clock time is vitally important because it

means lower development costs and rapid product avail-

ability, which both contribute to larger market share.

Potential equation numerical simulations are com-

putationally efficient because they involve the solution of

a simple scalar equation. The more complete formula-

tions of computational fluid dynamics (CFD), the

Navier-Stokes and Euler. equations, consist of five

coupled equations. In addition, numerical iteration

schemes for solving the potential equations typically con-

verge in fewer iterations than iteration schemes for the

Euler or Navier-Stokes equations. Thus, potential sol-

vers are typically an order of magnitude (or more) faster

than Euler equation solvers on comparable grids E3].

The price for this extraordinary speed is limitation of

application. All potential formulations are inherently' ir-

rotational and isentropic. These assumptions are gener-

ally consistent with subsonic, transonic and supersonic
flows at or near cruise conditions providing all shock

waves are weak. If strong shock waves exist in the flow

field, i.e., shocks with an upstream, normal-shock Mach

number component at or above about 1.3, then the full

potential solution will be in error: the stronger the shock

wave, the larger the error. A major ameliorating charac-

teristic of this situation is that for cruise conditions (asso-

ciated with the transonic flow regime), the existence of

strong shock waves is a very, undesirable characteristic. If

a candidate configuration has a strong shock wave, a nu-

merical result does not have to be very accurate to

eliminate it from further consideration in the design

process. Ideally', as the configuration is refined, the shock

strength is reduced and the full potential equation accu-

racy is improved. This is why the full potential formula-

tion is used so much in aerodynamic shape design for

transonic cruise conditions.

The main emphasis of this review is to describe numer-

ical solution techniques for soh,ing transonic flow prob-

lems governed by the full potential equation. Because

algorithms for solving the transonic small disturbance

(TSD) potential equation are very similar in nature, this

topic is covered as well, but in less detail. In a general

sense, this presentation deals with relaxation schemes

suitable for the numerical solution of elliptic partial dif-

ferential equations. Of course, transonic flow is not pure-

ly' elliptic in nature, but consists of hyperbolic regions

embedded in an otherwise elliptic domain. However, the

most successful numerical methods of solution for trans-

onic flow applications, at least for potential formulations,

have evolved from classical relaxation schemes asso-

ciated with elliptic equations. Thus, most of the algo-

rithms presented herein will have an elliptic-equation,

relaxation-algorithm flavor.

The transonic flow regime provides the most efficient

aircraft cruise performance; hence, most large commer-

cial aircraft cruise in this regime. However, transonic flow

fields tend to be sensitive to small perturbations in flow

conditions or to slight changes in geometrical character-

istics, either of which can cause large variations in the

flow field. Large performance penalties can result be-

cause of relatively small perturbations away from desired

design conditions. Computational techniques, therefore,

have enjoyed an increasing role in helping the aerody-

namics engineer find optimal design conditions, as well

as to evaluate design sensitivity. For more information

on how CFD methods, in general, are being used in (and

have benefited) the aircraft design environment, the inter-

ested reader is referred to Rubbert [4].

Transonic flow fields contain a variety of interesting

and unique characteristics. Typical airfoil and swept-

wing flow fields are shown in Figs. 1 and 2. The outer

freestream flow is typically subsonic and elliptic in na-

ture. Regions of supersonic flow usually exist on the

upper airfoil or wing surface and are generally' termin-

ated by a weak "transonic" shock wave. For the case of

a swept-wing flow field, the shock wave may actually,

consist of a system of shocks, as shown in Fig. 2. The

first shock is swept and therefore has a supersonic

downstream Mach number. The aft shock is approxim-

ately, normal to the local flow and therefore has a

subsonic downstream Mach number. Signals tend to

propagate very rapidly downstream in transonic flow

fields where the propagation speed is u + a (local flow

speed plus speed of sound) and very slowly, upstream

where the propagation speed is u - a. For a downstream

disturbance to propagate upstream it must move around

the supersonic zone, further increasing the difference

between the upstream and downstream propagation

speeds. This situation tends to make transonic

numerical solution techniques, which depend on
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Fig. I. Mach number contours about an airfoil showing a typi-
cal two-dimensional transonic, inviscid flow field compuled us-
ing a full potential algorithm.

Fig. 2. Mach number contours on the upper surface of a swept
wing showing a typical three-dimensional transonic, inviscid
flow field computed using a full potential algorithm.

physical-time-dependent algorithms, very stow (relative

to similar algorithms for subsonic or supersonic flow

problemsJ. Such problems are said to be "stiff," and

require larger amounts of computer time.
Another characteristic of transonic flow is that it is

governed by equations that are inherently nonlinear.

Linearization of these equations will remove the vital

flow field physics, which is responsible for the prediction

of shock waves. In contrast, inviscid subsonic flow can be

linearized with good accuracy. The result is Laplace's

equation lot a relative thereof), which can be solved using

a direct method, i.e., a method without iteration. The

inherent nonlinear behavior of transonic flow problems

means that a direct solution is impossible. Thus, one

basic feature associated with all transonic-flow numerical

schemes is that they must be iterative.

Viscous effects are also extremely important in trans-

onic fows. This complex subject invoh, es four major

effects: (I) shock/boundary layer interaction effects,

(2) the decambering and thickness effects caused by the

addition of a simple displacement thickness, (3) trailing-

edge effects, and (4) near-wake effects. Although a dis-

cussion of viscous correction procedures is not within the

scope of this review, an ample number of references are

presented for those potential solvers that have viscous

correction procedures included.

This review begins with a discussion of the various

nonlinear potential formulations that have been utilized

in the field of computational transonic aerodynamics

over the past two or three decades (chapter 2). Formula-

tion assumptions and limitations, nonconservative ver-

sus conservative forms, shock capturing capabilities and

nonuniqueness issues are discussed in detail in this chap-

ter. Next, in chapter 3, the presentation continues with

a review of past and present research activities involving

algorithm development and aerodynamic applications

with primary emphasis on the full potential formulation.

This chapter includes the milestone achievements that

have shaped the current state of the art in transonic

potential methods. Solution methods reviewed include

classical relaxation algorithms, time-accurate schemes,

supersonic space marching schemes and design methods.

Numerical result examples are included throughout

chapter 3 to highlight important discussion points. The

presentation ends with concluding remarks (chapter 4)

and recommendations for future work (chapter 5j.

Many additional review papers on this and other re-

lated topics are available. A few of these include Hall [5]

and South [6] where a historical development of the

potential formulation in computational aerodynamics is

presented; Hotst et al. [7] Kordulla [8] and Nixon and

Kerlick [9] where a variety of transonic potential flow

simulation surveys are presented; and the collected pa-

pers in Nixon [10] Caughey and Hafez [11] Zierep and

Oertel [12] Habashi [13] and Henne [14] where

a wealth of information about the more general topics of

computational aerodynamics and transonic aerodynam-

ics are presented. Finally, additional basic information

about numerical solution algorithms for nonlinear po-

tential formulations is available in Hirsch [15] Anderson

et al. [16] and Pai and Luo [17"1.

2. Nonlinear potential governing equations

2.1. General

There are several different potential equation formula-

tions used in aerodynamic simulations. Although this

presentation deals primarily with the full or exact velo-

city potential formulation, it is of interest to review all

potential formulations to establish differences and
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similarities. All potential flow formulations are based on

the ability to define a velocity potential, which requires

an irrotational flow assumption. Thus, for a velocity

vector field defined by q, the requirement for a velocity

potential to exist is

V x q = O. (1)

If this condition holds in all locations of the flow field of

interest, then a full or exact velocity potential function

_p exists and is defined by

V4) = q. (2)

Velocity components can be expressed in terms of partial

derivatives of the velocity potential function. For Car-

tesian coordinates this is given as

VO = q = ui + vj + wk = _b_i + ¢,,j + 4):k

or component by component as

4)_,=_,, 4),=_', 4):=_,,,

where i, j and k are the standard unit vectors in the x,

y and z directions, respectively; and u, v and w are the

Cartesian velocity vector components, also along the x,

y and z directions, respectively. In the above expressions,

the quantity 4)_ (for example) is used to indicate a partial

derivative of 4) with respect to the spatial coordinate x.

The velocity potential function has a spatial variation

which is independent of path. It can be defined for incom-

pressible or compressible flows that are either steady or

unsteady. It is restricted, however, because of the irrota-

tional-flow assumption, to flows without viscous effects,

i.e., potential flows are inherently inviscid in nature. Of

course, viscous boundary layer corrections can be in-

cluded quite easily (at least for attached flows) by solving

a potential formulation in conjunction with the bound-

ary layer equations, but this is beyond the scope of this

presentation and will not be discussed further. Other

types of rotational flow corrections can be included, e.g.,
flows with circulation and/or vortices, but this requires

additional (often empirical) modeling. More on circula-

tion modeling will be presented in the section on bound-

ary conditions. Next, the discussion turns to the various

governing equation forms that utilize a velocity potential

function.

2.2. Full oi exact potential equation

The most general form of the full potential equation is

derived from the mass continuity equation using the

definition of the velocity potential given above l-Eq. (2)].

This equation, written in integral form, is given by

!-fo,,-;=- dr2 + n' P V4) dS = 0, (3)

where t is the physical time coordinate, p is the fluid

density, f2 is an arbitrary closed control volume, S is the

boundary surface surrounding f2, and n is the unit out-

ward normal vector to the surface S. Eq. (3) states that

the time rate of change of the mass in an arbitrary fixed

volume (first term) is balanced by the net outflow of mass

leaving the same volume (second term). In order for Eq.

(3) to represent a closed-form description of a flow field,

an algebraic expression for the density' in terms of the

velocity potential must be utilized. Several forms of this

expression will be discussed shortly.

Eq. (3) can be expressed in differential form by trans-

forming the surface integral term into a volume integral

using Gauss' Divergence Theorem:

ffron . p V4) dS = I7. p V4) dQ.

Using the fact that the control volume f2 is fixed with

respect to time, the differentiation and integration asso-

ciated with the first term of Eq. (3) can be interchanged.

Combining the two volume integrals into the same term,

Eq. (3) becomes

fIIo( )--_ + V. p V4) &Q=0.

Since the control volume is arbitrary, the integrand in

the above equation vanishes everywhere, which results in

the desired differential form of the unsteady full potential

equation.

_p
-- + V'pV4) =0. 141
&

The above integral and differential forms of the full

potential equation still need an additional relation to

complete the formulation. In particular, a relation that

expresses the fluid density p as a function of the velocity

components 4):,, 4)_. and 4':, is required. A suitable ap-

proach for this derivation starts with the inviscid mo-

mentum equation given by (this is actually a form of the

Euler momentum equation)

gq __ VP = O,
_ + q. vq -7

where p is the fluid pressure. The second term in the

above equation can be reduced to a convenient form

using the Lagrange acceleration formula [18] given by

Dt -& +V -qx(Vxqj,

where q in the second term on the right-hand side repres-

ents the magnitude of the velocity vector. The D/Dr
notation used on the left-hand side stands for the
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material or substantial derivative defined by

Dq dq
D--t= ,at + q" P'q

For irrotational fluids the following equation is easily
obtained

Using this relation the momentum equation becomes

_'-7+ r" + _'

Substituting Vdo for q and using the fact that

vi dp _ Vp

for a barotropic fluid: yields

v =-+ + =0.
, ,! p

The integration of this expression along an arbitrary line
in the flow domain yields

?q5 _ q2-- + + = Cit), (5)?t -7

where C(0 is a constant of integration that m general is
a function of time but not space. Eq. (5) is the unsteady
Bernoulli equation. It and various related forms of
the Bernoulli equation are used in many areas of fluid
dynamics.

The integral in the unsteady Bernoulli equation must
be evaluated before this equation can be used further.
This is accomplished using

P
-- = const, (6)
p7

where ;' is the ratio of specific heats (equal to 1.40 for air)
and "const" is a constant that can be evaluated when

a nondimensionalization is chosen. Eq. (6) is the standard
densit)-pressure relationship for an isentropic flow. With
this relation the integral in Eq. (5) can easily be evaluated
yielding

CdP_ ;-' P a:. ;,-lp 7-1"

where a is the fluid speed of sound. The last equality in
the above equation is obtained using the perfect gas

2A barotropic fluid is one in which the density can be ex-
pressed solely as a function of pressure, i.e.. p = O(P). For
example, a fluid undergoing an isentropic process is a barotropic
fluid.

speed of sound definition. Thus, the final form of the

integrated unsteady Bernoulli equation is given by

a_4_ - + =c(o. (7)
8t ,-1

The ultimate goal of this derivation is obtaining a rela-
tionship between the fluid density and derivatives of the
velocity potential, i.e., the fluid's velocity components,
thus allowing closure of the full potential equations given
above by Eqs. (3) or (4). This is accomplished using
Eq. (7), the speed of sound definition, and the isentropic
density-pressure relation [Eq. (6)], yielding the finaI de-
sired relation

p = 1 + .,__._1 (M_,_ - 2do, - cb_ - do_ - ¢_')

(8)

In this equation the density p and the velocity compo-
nents ¢_,, Cy and 4): are nondimensionalized by the
freestream values of the density p_ and the freestream
value of the speed of sound a,, respectively. The Car-
tesian coordinates x, y and z and the time t are non-
dimensionalized by a characteristic length, usually the
airfoil or wing chord c and the quantity a:,/c, respect-
ively.

Several other forms of the full potential equation with
different types of nondimensionalization have been used
for numerical computations. For example, the steady
flow version of the differential form of the full potential
equation in which the density is nondimensionalized by
the stagnation density p_,_ and all velocity components
are nondimensionalized by the critical speed of sound
a* is given by

(pdo_)_ + (pdo,.)), + (pdo-)_-= 0. (9)

All length scales are still nondimensionalized by the same
characteristic length. Use of the above nondimensionaliz-
ation creates the following useful conditions. At stagna-
tion points

p=l, do.,-= doy= do: = 0,

and at sonic lines

=0.633938145... (7= 1.40).

In addition, either of the two nondimensionatizations
given above can be used to evaluate the constant in the

isentropic density-pressure relation [Eq. (6)] or the con-
stant in the steady Bernoulli equation, which is Eq. (7)
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with the time terms removed. For example, using the

second nondimensionalization from above (p_,,_ and a*),

the following results are obtained:

Isentropic density-pressure relation

p _7+1 (11)

rOY O_,

Stead), Bernoulli's equation:

q2 a 2 t 7 + 1
+ (12)

2 7-I 2",:-1

Another widely used potential equation form is obtained

from Eq. (9) by making the additional assumption of

incompressible flow. This yields the familiar Laplace's

equation

v% = 4,_., + 4,,,,.+ _:: = 0. (13

Unlike the nonlinear full potential equation given by

Eqs. (3), (4) or (9) Laplace's equation is linear. Although

this further limits the flow field physics that can be

simulated, e.g., shocks cannot be captured with Laplace's

equation, the linear nature lends itself to the powerful

method of superposition. A numerical approach that

utilizes superposition to solve Laplace's equation is typi-

call)' called a panel method. A key panel method charac-

teristic is that only the geometric surface of interest need

be discretized. In contrast, all numerical methods used to

solve nonlinear governing equations require a field or

volume discretization, a feature that greatly increases the

numerical algorithm complication. In a panel method,

flow tangency along the aerodynamic surface is obtained

by solving for source, vortex or doublet distribution

strengths for the surface's discretized elements. This op-

eration requires and is computationally paced by the

inversion of a large matrix whose rank is equal to the

number of boundary elements. Thus, a key aspect of ans,

panel rnethod implementation is the judicious selection

(both in number and placement) of an appropriate sur-

face element discretization. Panel method details are

beyond the scope of this presentation and will not be

discussed further. The interested reader is referred to

Anderson et al. 1-16] for basic information on panel

methods; Smith 1-191 for a historical presentation of

panel method development; and Hess 1,,201 Hoeijmakers

1,21] and Roggero and Larguier [22] for information on

current panel method applications.

2.3. Boundary conditions and circulation

To complete the full potential governing equation spe-

cification, boundary conditions are required along all

boundaries. Specifically, these boundaries fall into three

categories: freestream, symmetry planes, and geometric

surfaces. The freestream boundary condition, simply

stated, is given by

x2+y:+z2--, _, q_--+qS_,

where 4'_ is the freestream distribution of the velocity

potential, usually uniform flow. The latter two boundary

conditions, symmetry planes and geometric surfaces, are

both treated in the same manner, i.e., with a flow tan-

gency assumption given by

q-n=0,

where n is a unit vector normal to the geometry of

interest. More on flow tangency boundary conditions is

presented in Section 2.8 where transformation techniques

for the full potential equation-are discussed.

For aerodynamic applications to be useful the numer-

ical formulation must be able to predict aerodynamic

loads, e.g., lift. The Kutta-Joukowski theorem says

L = rO<q_F,

where L is the lift, p:_ is the freestream fluid density, q:_ is

the freestream fluid velocity magnitude, and F is the

circulation. The circulation around (for example) an air-

foil is mathematically defined as

F = qDq' dl,

t

where I is arts, closed path surrounding the airfoil for

which the velocity vector field is defined. Using Stokes'

Theorem it can be seen that circulation is inherently tied

to vorticity, that is

F=_qdl= ffsVXq'ndS'.

where S is the surface constructed such that its boundary

is I and n is the unit outward normal vector to S. Thus, it

can be seen from the above equation that an irrotational

velocity vector field, such as that predicted by the futl

potential equation, is not capable of supporting circula-

tion, i.e., there is no lift.

This situation can be corrected by adding a linear

potential vortex solution to the nonlinear potential that

surrounds the airfoil. This is accomplished by modifying

the freestream boundary condition as follows

4_ob = 4',. + _1_,',

where qSob is the new outer boundary condition, 0_ is the

usual uniform-flow velocity potential solution, and qS, is

the newly added potential vortex solution gixen by

F
¢b.... 0.

27:
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In the above equation, F/2n is a constant representing

the vortex strength and 0 is the usual angular coordinate

associated with a traditional polar coordinate system

centered inside the airfoil. The vorticity associated with

the resulting potential solution is zero everywhere except

at the center of the vortex where it is infinite. The circula-

tion is a constant (equal to F) for all integration

curves/that include the airfoil and zero for all integration

cur\es that do not include the airfoil. Because of the

periodic nature of O, the 42v function is double-valued at

0 = 0, taking on values of 0 and 2n. In other words, along

some "cut" in tile velocity potential solution, usually

emanating from the airfoil trailing edge to downstream

infinity along the airfoil wake, the velocity potential

"jumps" from its 0 = 0 value to its 0 = 2rc value. The

magnitude of this velocity potential jump (easily derived

by looking at the definition of 05,.) is equal to F. In effect,

forcing the 05, vortex strength to be equal to the airfoil

trailing edge velocity potential jump, is like a Kutta

condition that forces the airfoil-surface upper and lower

pressures to match.

2.4. Noncon.vercative _rm

Eqs. (4) and (9) are two forms of the full potential

equation which are commonly used in numerical applica-

tions, especially when shock waves are expected to be

captured in the solution. These versions of the full poten-

tial equation are written in the so-called conservative

form, which is characterized by having all variables inside

the outer-most differentiation. The steady full potential

equation has also been solved in nonconservative form for

subsonic and transonic applications. For subsonic ap-

plications the nonconservative and conservative solutions,

assuming equivalentl3 small levels of numerical error, are

virtually identical. For transonic applications involving

captured shock waves the nonconservative and conserva-

tive solutions are different. At shock waves the nonconser-

vative approach produces an error in the form of a mass

source that causes an error in shock position and strength.

The consequence of this error is discussed in detail in

Section 2.10. The nonconservative form of the full poten-

tial equation is presented here because of its historical

importance and because it provides a useful framework

for analyzing the conservative full potential equation.

The nonconservative form of the full potential equa-

tion is derived from the conservative form by using the

chain rule to expand derivatives. Expressions for the

density derivatives are obtained from the density expres-

sion [Eq. (10)], the speed of sound definition, and the

isentropic density-pressure relation [Eq. (11)]. Substitu-

tion of these derivatives into the expanded full potential

equation yields

(a2 - u-' cb_ + la: - v:142_., + (a: - w2to:=

- 2uvqS_.r - 2uw05._: - 2vw42>- = 0. {14)

This is the steady', nonconservative full potential equa-

tion written in three-dimensional Cartesian coordinates.

The velocity components 05x, 4_, and 42= have been re-

placed by u, v and w, respectively.

The unsteady version of the nonconservative full po-

tential equation can be derived in a similar fashion and is

given by

(a 2 -- u2)05xx + (a 2 -- F2)05,,r -.b (a 2 -- n,2)05z:

-- 2uv42_y -- 2uw42= -- 2vw¢_.:

= 42,, + 2u42._, + 2v42y, + 2w42=,. (15)

More on the characteristics of the full potential equation,

both conservative and nonconservative forms, is pre-
sented in Section 2.10.

2.5. D'ansonic small disturbance (TSD) potential equation

Another potential equation formulation used for com-

puting transonic flows about aircraft is the transonic

small-disturbance (TSDI potential equation. Many of the

numerical algorithm breakthroughs realized in solving

the full potential equation were first developed using the

simpler TSD potential formulation. The TSD potential

equation is derived from the full potential equation by

first defining a small-disturbance velocity potential O

V_o = q - q_,

where q is the usual local velocity" vector and q_. is the

freestream velocity vector, which is assumed to be alig-

ned with the x direction. It is defined by

q_ = u_i.

With the above definitions the small-disturbance velo-

city components of Vcp are given by

(Px = U -- U_ (Oy _ F, Cpz = W.

Derivation of the TSD potential equation begins by

substituting these small-disturbance velocity compo-

nents into the full potential equation [either Eq. (14) for

steady flows or Eq. (15) for unsteady flows]. Then after

neglecting small terms according to the small-distur-

bance assumptions given by

the three-dimensional unsteady TSD potential equation
becomes

I1- M_ -- M2 (; , + 1}cPx-],p.,., -: (p,., + (p::
L [Iz

1
= _-(o, + 2u_cPxt). (16)

a_
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One term containing a small-disturbance quantity' (the

first term) survives the small-disturbance analysis. This is

because for transonic flow

(O-

_ ' M2 I)-22-,1 Mk _...(? +
U_

Eq. (16) is valid for subsonic, supersonic and transonic

flows that satisfy the original full potential equation

assumptions (inviscid, isentropic and irrotational flow)

and that are a "small disturbance" away from freestream.

An essential ingredient of Eq. (16), and all transonic

governing equations, is that they are nonlinear, i.e., the

O:,(P_,._term is nonlinear. This term is required to predict

shock waves, which are inherently a nonlinear phe-

nomena. Linearization of a transonic flow governing

equation removes the essential mathematics required to

predict shock waves.

Another variation of Eq. (16) that has been used in

many' applications (see, e.g., [1,2311) is the low-frequency

TSD equation. If the frequency' of oscillation of the prob-

lem under consideration is small enough, then the

(p, term can be neglected yielding

v" ., (Ox71 -_ ,; - ,¥I5(: + ,j _jo,,
2tl_

+ r&-r + O= = _ (&,,.

(17)

A convenient nondimensional measure of a problem's

frequency is obtained using the reduced frequency' de-

fined by k = o)c/u_, where ca is the problem's physical

oscillation frequency measured in cycles per second.

When the reduced frequency of a specific unsteady prob-

lem is less than about 0.2 (and all other TSD assumptions

are valid), then the low-frequency TSD equation is usu-

ally considered to be valid.

Of course, the steady TSD equation is obtained by

neglecting all time derivatives in Eq. (16), which yields

1-:'v/_- M_:(;'+ 1) q_xT_p.,.,. + cp,._.+ _.-_- =0. (18
/'/_ _]

Eqs. (16)-(18t are in nonconservative form, i.e., not all

variable coefficients are inside the outer differentiation.

To transform these equations into conservative form is

easily accomplished and yields [e.g., for Eq. (18)]

(1-._4_ )_p_-M_e,, + L_2T,. j._+ <.,. + _P.-_= o. (19)

gqs. (16)-(19) represent classical forms of the TSD equa-

tion. but several other forms exist, including forms de-

rived to better predict transonic flows on swept wings.

For more information on other TSD equation forms see

van der Vooren et al. [24] or Slooff [25].

Additional useful equations can be obtained from

Eq. (16!. For example, by' neglecting the last small-distur-

bance term. the unsteady small-disturbance equation

given by

1

(l - M2 )_p,.,. + _p.,. +_p:_ = c-_7_(_p,, + 2u_ _p._,) (20)

is obtained. This equation is linear and valid for either

subsonic or supersonic flow, but not transonic flow. As in

the TSD potential equation case. a steady version of this

equation is obtained by neglecting all time terms, which

yields

(1 - M_)_p,._+ <, + _p=:= 0. (21)

This is the famous Prandtl-Glauert equation and can be

used to describe steady, small-disturbance potential flow.

Lastly, if the flow is assumed to be incompressible

(i.e., a_ --, _, M_ _ 0) the small-disturbance potential

equation, valid for either steady or unsteady flow, be-

comes

q)x_ + _P_.y+ _P:: = 0, (22l

which is another version of Laplace's equation. This

version is based on the small-disturbance potential func-

tion and differs from Eq. (13) in the boundary conditions

that are applied, both in the freestream and at the air-

foil/wing surface.

2.6. Small-disturbance boundam. _conditions

The freestream boundary' condition consistent with

small-disturbance theory is that all disturbances must

vanish in the freestream, i.e.,

¢p._.:,o= ¢p_._ = _0:,_ = O.

The flow tangency boundary condition for a typical

"thin" airfoil or wing used in conjunction with any of the

small disturbance formulations presented in the last sec-

tion is generally derived as follows: The standard tan-

gency condition can be implemented at the airfoil or wing

surface using

¢p ± cp_ dg ± (x, y)

where x is aligned with the freestream direction, y is in

the span direction and - is in the vertical direction. The

subscript "ws" indicates that the boundary condition is

applied at the wing surface. The functions _l-(x, y) and

g-(x, y) define the upper and lower wing surfaces, respec-

tively. The small disturbance version of this boundary

condition is obtained by making two simplifications.

First, q0_ is neglected relative to u_. in the middle term

denominator. Second, the flow tangency boundary con-

dition is applied at the airfoil slit, i.e.. at z = 0, instead of

the airfoil surface. This latter approximation greatly sim-

plifies the volume grid generation process for TSD
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potential applications because geometrical surfaces do

not have to be fitted with grids. This is a key reason that

this formulation was so widely used for three-dimen-

sional transonic flow applications in the early years of

CFD development. The final small-disturbance flow-tan-

gency boundary condition with these simplifications be-

comes

(a-(x, y. 0 +-) = u_--
dy_-!x, y)

dx

This expression approximates the required flow tangency

boundary' condition at the airfoil surface to an accuracy

consistent with small-disturbance theory. A key flaw in

small-disturbance theory is displayed in this boundary

condition at (for example) an airfoil leading edge where

the slope of the surface becomes infinite, and accurate

boundary condition implementation is impossible. This

difficulty is a symptom of the breakdown in small-distur-

bance theory at stagnation points. The streamwise

velocity component perturbation becomes large and is

actually equal to the freestream velocity at the stagnation

point. This fundamental limitation in the TSD potential

equation approach is the primary reason that its use has

declined in recent years.

2. 7. Mathematical properties

The primary motivation for studying the nature of

partial differential equations (PDEs) in the present con-

text is to gain insight into the physics they describe and

to develop guidelines for the implementation of numer-

ical solution procedures. Different equation types gener-

ally require different solution algorithms. With this

purpose in mind, consider the following general quasi-

linear, second-order PDE:

Au_.,. 4- Bu,._ + Cu;_ = F. (23)

where u is an arbitrary dependent variable and A, B,

C and F are (at most) functions ofx, y, u, ux and u_.. This

equation can be studied and classified by considering

the corresponding characteristic equation given by (for

a derivation of the characteristic equation and additional

discussion on this topic see Ames [26] and Mitchell 1-27])

"dy' -".t.,- / ., =o. (24)

Using the quadratic formula, the two characteristic direc-

tions associated with Eq. (23) are given by

(dr" I + B _- _ - 4AC__ \ B"

\_.x I , 2.4
(25)

The nature of these characteristics determines the equa-

tion classification. Eq. I23) is hyperbolic if the character-

istics are real and distinct; i.e., if the discriminant of Eq.

(25) is greater than zero (B 2 - 4AC > 0), then the equa-

tion is hyperbolic; parabolic if the characteristics are rea;

and coincidental (B 2 - 4AC = 0); and elliptic if the char-

acteristics are complex and distinct (B" - 4AC < 0).

By using the discriminant test described above, it can

be shown that the TSD equation given by Eq. (18) (two-

dimensional version) is hyperbolic when

_>

u_ (;,+ l)M_'

and elliptic when

<:

u.. (v+ 1)MU

In other words, the sign of the first term coefficient

determines the equation type. If the coefficient is positive,

the local flow is subsonic; if it is negative, the local flow is

supersonic. The nonlinearity of the first term is essential

for describing the mixed character of transonic flow and

is the mechanism by which shock waves are formed.

The characteristic directions associated with the TSD

potential equation are given by

dv = + 1-M_-M_b+ll
1,2

Notice that these characteristic slopes are symmetric

about the x-axis regardless of the local velocity vector

orientation; i.e., the characteristics are not a function of

the y component of the velocity %.. A sketch of the

steady, two-dimensional TSD potential equation charac-

teristics for a typical supersonic point is presented in

Fig. 3. This situation, which is in dramatic contrast to the

full potential or Euler formulations, where the character-

istics are symmetric about the local stream direction, has

certain simpli_'ing implications regarding spatial discret-

ization approximations for the TSD potential equation.

In particular, it is much easier to construct a spatial

discretization scheme for the TSD potential equation

with a numerical domain of dependence that is compat-

ible with the PDE's mathematical domain of dependence.

As seen in Fig. 3, as v grows relative to u, the x-axis

symmetry condition for the characteristics becomes more

and more nonphysical. This is a direct result of the

small-disturbance assumption that requires v to remain

small in order to keep the TSD potential equation valid

Classification of the stead 3, full potential equation

given by Eqs. (9) and (10) is difficult because this set of

equations is not in the standard form given by Eq. (23).

However, the nonconservative full potential equation

[Eq. (14)] is ideally suited for this purpose. This equation

written in two dimensions is given by

(a 2 -- uZ)_bxx - 2uv4)._, + (a z - v:)4)_,_. = O. (26)
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Fig. 3. Sketch of the two-dimensional TSD equation character-
istics for a typical supersonic point.

Fig. 4. Sketch of the two-dimensional full potential equation
characteristics for a typical supersonic point. (a} PhvsicaI do-
main. (b) Computational domain.

where (again) u and v have been substituted for qSx and

G., and _b is the full velocity potential. The discriminant

defined in Eq. (25) for the full potential equation is

given by

B 2 - 4AC = a2(q 2 - a2),

where q2 = u 2 + v2. It can be easily seen from the above

equation that the full potential equation is hyperbolic for

supersonic flow (q > a), parabolic for sonic flow (q = 0),

and elliptic for subsonic flow (q < a). Even though this

result is obtained for the nonconservative form of the full

potential equation, it is also valid for the conservative

form because both forms are mathematically equivalent.

The characteristic directions associated with the full

potential equation are given by

(dr,'I =
\U_ ),,: .: - u'-

Notice that the characteristic directions are not symmet-

ric about the x-axis as is the case with the TSD potential

equation. Instead, the characteristics are symmetric

about the stream direction. This can be shown by trans-

forming the full potential equation [Eq. (26)1 into a local

stream and stream-normal coordinate system (s, n) using

the following transformation

la F F /2

X =--S ----_1, y =--S q---n.

q q q q

The resulting equation is given by

(a2 _ q2)ff_ + a2(o,,,, = O, (27)

where

4'_,= _(u:4_,,_ + 2uv& + F-&,},

Using the new version of the full potential equation given

above, new characteristic directions can be derived and

are given by

ds) _ + a
._ /: 7" --i , ., q- --_12

Of course, these characteristic slopes are real and

distinct only for hyperbolic flow (q > a). Since they'

are equal in magnitude, but opposite in sign, they are

symmetric about the stream direction. A sketch of the

steady, two-dimensional full potential equation charac-

teristics for a typical supersonic point is presented in Fig.

4. Note the comparison with the TSD characteristics

presented in Fig. 3. The mathematical domain of depend-

ence associated with the full potential equation follows

the physical domain of dependence more generally than

does the TSD potential equation. Spatial discretization

schemes designed to solve the full potential equation

must take this fitct into account for proper numerical

operation.

2.8. Tran_formation techniques

So far all potential equation formulations have been

presented using Cartesian coordinates. Often, before

solution algorithms can be implemented, the governing

equations must be transformed from the physical domain

(Cartesian coordinates) into some suitable computa-

tional domain. This is a requirement for finite-difference

and some finite-volume methods, but not methods based

on unstructured grid approaches, which are described in

Section 3.10. Even applications that use Cartesian coor-

dinates in the computational domain, e.g., most TSD

applications, typically require the use of stretching or

shearing transformations or both. The primary reason

for applying an independent variable transformation to

the governing equation is to transform any geometrical

surfaces in the problem into constant coordinate lines in

the computational domain. Thus, boundar3-condition
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implementation and grid clustering at geometrical surfa-

ces can be achieved without undue difficulty.

A general, independent variable transformation writ-

ten for unsteady, three-dimensional applications, which

maintains strong conservation-law form of the original

governing equation, is given by (see [28-31] for more

discussion on this type of transformation procedure)

_(x, v, z, tt, _ q(x, v, z, t), _.= _(x, y, z,

r = t, (28)

where x, y, c and t represent the Cartesian-coordinate

physical domain and _, q, ( and -c the computational

domain (see Fig. 5 for a two-dimensional example). The

conservative full potential equation written in Cartesian

coordinates [Eqs. (4) and (8)] is transformed into the com-

putational domain _, t/, _ r coordinate system by ap-

AIRFOIL

OUTER

(a)

UPPEROUTFLOW
BOUNDARY

WAKE CUT

LOWER OUTFLOW

BOUNDARY

LOWER

OUTFLOW UPPER

V BOUNDARY
OUTFLOW

\ A rl OUTER BOUNDARY BOUNDARY 7
\t Iltl ili_llIIIIII,,,,,,,,,,,, ifl F I [ltlb, "

] IIII tlt11111t,,,,,,,,,,,, i 111[
Illlll II illlI I111 lit Itl lilt II Ill I
III}111111[ltllll

liillll

I tll r [

I Ill[ Ill I1_ II It tl

I IIII III tll 1111 l
If

LOWER AIRFOIL
WAKE CUT

[:J
i 2,

UPPER ""-
WAKE CUT

b)

Fig. 5. Numerically generated airfoil transformation [(x r)*-+
(_,_7)] showing a "C'" grid topology, (a) Transonic flow,
(b) Supersonic flow.

plying the standard chain rule written for the inverse of

the transformation given by Eqs. (28), namely

3 r? C g

_.x "7"2,ox . o,,

# c_ 3 g

(29)
c? 3 O 8,

-z- = _:=:. + rt==-- +_:--
oz o_ otl O_'

3 3 3 _ 3

where the terms containing derivatives of -c with respect

to x, y or : from the first three lines in Eq. (29) are zero

because of the dependence of -r on only z. However, the

terms containing derivatives of ¢, r/, or _ with respect to

t are, in general, not zero. The full potential equation

given by Eqs. (4) and (8) transformed using Eqs. (28)
becomes

+ + + =o, (30a,
: , J 2_ 7 ,,

7- ]o = 1 + --4--[M_ - "-d)_- (u + C,)4,_

l,I{;'- 1 )
- (V + ,l,)qS, - (W + _,),:;b:] (30b)

where

U = _, + A_4q + A44o,,+ A._4):.

V = rh 4-. A4_e ..}- A20. + A60; ' (31a)

and

A1 = V_' F_ = =: ...._:, + ,.7?,+ _._-,

. . :_ + s;7, + s..,

/16 = IYt I " [Y_ = rlx_x "4- q,,_] + _Iz_:,

-_ (X_ynZ _ + X,lfl¢2 _ 4:- x..ylz,t -- xgy_2 n -- Xr_y_2:

- x;y_z¢) -_. (31b)

In Eqs. (31a) and (31b), U, V and W are the contravariant

velocity components along the _, _7 and _ coordinate
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directions, respectively; A1 -A6 are metric quantities; and

J is the determinant of the transformation Jacobian. The

metric quantities given above in Eq. (31bY are evaluated

using the following metric identities:

_x = J(Y,;: - 3,:z,), _7._= J(y;z+ - ).)z;),

_ = JCx;z,, - x,,z;), _,, = J(x,z: - xcz_),

_; = J{x,,y: - x:)',,), rl: = J(x:)': - xgy;),

_, = .l(x,_z_ - x+z,), q, = - x_7._ - 3'_%, - z,77=,

(,: = J(x:y,, - x,t)',.), _.t = - x_._x - y:_., - z+_.:.

The transformed full potential governing equation given

by Eqs. (30a) and (30by can be used for general geometries

in which the aerodynamic surface of interest is mapped to

a constant coordinate line in the computational domain,

even if the surface is moving in time. For steady flow

problems, the proper transformed full potential govern-

ing equation is simply obtained by setting all time terms

in the above equations equal to zero. With this mapping

procedure, for either steady' or unsteady problems, ap-

plication of the flow-tangency boundary condition is

easy and accurate to implement. For example, if the

aerodynamic surface of interest is defined by,

F(x, y, z, t) = 0 then the flow tangency boundary condi-

tion is given by

DF _F
- + q. VF = O. (32)

Dt (Yt

In the _, q, _, z computational domain, assuming (for

example) that the aerodynamic surface of interest F is

mapped to an _7 = constant surface, the flow-tangency

boundary condition becomes

_7, + q. F,1 = ,1, + (4.,i + (b,j + qY_k)'Cnxi + ,?,,j + ,1..k)

= v = o. (331

More simply stated, the contravariant velocity' compon-

ent in the _7-direction V must vanish at the _1= constant

13

surface where flow tangency is required. For problems in

which the boundary does not change with time, the

proper flow tangency boundary condition is obtained

from the above condition by simply setting the time term

to zero. If the _7 -- constant surface is a )'= constant

symmetry plane, the above flow tangency boundary con-

dition is also generally, applicable.

2.9. Shock wave capture criteria

The full potential equation formulations given above

are valid for isentropic, irrotational flows about arbitrary

shapes. To obtain physically realistic results, however,

the full potential equation is restricted to shapes and to

flows for which viscous effects (in particular, flow separ-

ation) are not important. The full potential equation is

also restricted to flows that contain at most weak shock

waves. Thus, allowable freestream conditions range from

incompressible (M_,. _ 0) to supersonic (M,. > I), pro-

riding the shock waves are "weak." The weak shock

wave condition is approximately satisfied if the max-

imum normal shock Mach number never exceeds 1.3.

Fig. 6 shows two typical flow situations which are gener-

ally valid for full potential equation simulations, Fig. 6a

showing a typical transonic flow field and Fig. 6b show-

ing a typical supersonic flow field.

The full potential formulation, despite the isentropic

assumption, is approximately valid for these weak shock

wave cases because the entropy produced by such weak

shock waves is very' small. This is evident by' looking at

the entropy, change across a shock wave (As) as a function

of the upstream normal Mach number component (M,,),

which is given by' [32]

AS = S2 -- ._,t = O(M_, - 1) 3,

where & and s2 are entropy' values upstream and down-

stream of the shock wave, respectively. Note that for

small values of M,_ - 1 the entropy production is very

small, and the isentropic assumption is valid. A compari-

son of the isentropic shock jump relation written for

SONIC LINE ....... __1

_1"_ SHOCK....

(a)

M >1

BOW SHOCK"

(b)

Fig. 6. Typical transonic and supersonic flow cases for which the full potential formulation is valid.
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Fig. 7. A comparison of the full potential and Rankine-
Hugoniot (Euter equations) shock:iump relations for a one-
dimensional normal shock wave, taken from Steger and Baldwin
[333.

a one-dimensional normal shock wave, _iven by

[(, ]7+1 , 0.,

with the Euler shock jump relations (the Rankine-

Hugoniot conditions) is given in Fig. 7 (taken from Steger

and Baldwin [33]). For a local upstream Mach number

(Mz) at or below 1.3 a reasonable approximation is

obtained b 5 the isentropic formulation. Values of M_ tess

than one correspond to expansion shock waves, which

are physically excluded by entropy. Since potential for-

mulations are isentropic, another mechanism must be

introduced to exclude expansion shock waves. The intro-

duction of dissipation or artificial viscosity by a suitable

upwind-biased discretization scheme in supersonic re-

gions of flow achieves this effect and will be discussed in

more detail subsequently.

2.]0. Conservatipe Udt'SI4Snonconservative forms

In 1954 Lax [-34] showed the importance of using

conservative form for the fluid dynamic equations when

shock capturing schemes are used. This conclusion is
based on the fact that nonconservative differences of

discontinuous flow quantities across shock waves are

numerically inaccurate. Differences of flow variables,

which are conserved, that is, which are continuous across

shock waves, are much more accurate. This, of course, is

a relative statement. Use of conservative form does not

by itself guarantee an accurate resolution of captured

shock waves. Many other numerical considerations play

an important role. However, if a shock-capturing scheme

is used to solve a nonconservative form of the governing

flow equations, no matter what the numerical scheme

characteristics, significant errors in the shock wave posi-

tion and strength can result.

If this is true and was known as early as the mid 1950s,

then why was there so much attention devoted to solving

the nonconservative potential equation in the early

1970s? The answer to this question is twofold. First, the

nonconservative forms of the TSD and full potential

equations are more convenient to solve because of the

sign change associated with the leading term coefficient

at or near the sonic line. This allows a simple construc-

tion for type-dependent numerical schemes. This prop-

erty is not shared by conservative forms of these equa-

tions. The second reason is that the error induced by

nonconservative form for a shock-capturing computa-

tion involving only weak shocks is not large, and it

fortuitously produces results (for inviscid computations)

in better agreement with experiment than conservative
schemes.

In the previous section a plot comparing the shock

polars for the Euler and full potential equations is pre-

sented (see Fig. 7). Although a similar analytic shock

polar for the nonconservative full potential equation

cannot be derived, shock jumps obtained computation-

ally can be compared (see Gregg and Henne [35] for

a number of computations where this has been done).

The nonconservative shock polar, thus computed, com-

pares more favorably with experiment than with conser-

vative results. This fact has caused the nonconservative

potential formulation to be utilized in many different

applications. But why does this behavior exist and is

conservative form really the correct form to use?

The superior experimental correlation that nonconser-

vative potential methods exhibit relative to conservative
methods is due to an effective mass source introduced at

shocks. This numerically generated "error" fortuitously

models the reduced shock pressure rise caused by the

shock/boundary-layer interaction, and therefore, in most

cases, produces better agreement with the experimental

pressure distribution than a conservative result. Newman

and South [36,37] present a quantitative description of

this behavior. In this study, conservative and nonconser-

vative TSD potential solutions are computed about

a 10%-thick, non-lifting, parabolic-arc airfoil. Pressure

distributions and streamline deflection patterns for this

problem at two different freestream Mach numbers

(M_ = 0.84 and M_ = 0.95) are presented in Fig. 8.

The nonconservative shock wave at the lower free-

stream Math number is weaker and slightly forward of

the conservative shock. For the higher freestream Mach
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Fig. 8. Computed symmetr5 line pressure coefficients and streamline deflections for non-lifting transonic flow past a 10%-thick

parabolic-arc airfoil (taken frorn Newman and South [36,371t.

number case, the conservative result exhibits a so-called

"fish-tail" shock wave solution (an oblique shock ema-

nating from the trailing edge followed by a normal shock

about half a chord downstream of the airfoil trailing

edge). The nonconservative result for the higher Mach

number case is quite different than the conservative result

exhibiting only a single normal shock at the airfoil trail-

ing edge. The computed streamline deflection patterns in

Fig. 8 show the cause for these pressure distribution

discrepancies, which seem to increase with Mach num-

ber. Note that the vertical scale has been magnified by

a factor of about 20 to accentuate the situation. The

conservative streamlines entering the flow field are the

same height as those leaving. However, the nonconser-

vative streamlines are deflected upward (at the approxim-

ate position of the shock wave) indicating a numerical

error resulting in effective mass addition at the shock

wave. Thus, use of the nonconservative form destroys

global mass conservation when captured shock waves

are present.

Note: This situation is alarming for external flow calcu-

lations but disastrous for internal flow situations where

a global mass balance is even more important.

When viscous corrections are added to the simulation,

the conservative versus nonconservative controversy

changes. The addition of viscous corrections to inviscid

formulations is important for many calculations in the

subsonic and transonic cruise regime. If the viscous cor-

rection procedure is accurate in simulating all aspects of

viscous flow, then the nonconservative formulation will

still produce mass sources at shock waves, and therefore,

introduce errors into the solution. The conservative for-

mulation, with accurate viscous corrections, will produce

the correct physical answer, at least, within the limita-

tions of the irrotational and isentropic assumptions. The

ultimate formulation must be based on the mathemat-

ically sound conservative form. Most recently produced

and utilized potential flow codes have been based on

conservative formulations, and this trend is anticipated

to continue.
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2 / 1. Full potential equation nonuniquo_ess

In 1981 Steinhoff and Jameson [38] described

a nonuniqueness problem for the steady, conservative full

potential equation. Additional work further exploring

this phenomena is presented in Salas et al. [39-41]

for the stead), full potential equation, in Dowellet al. [42]

for the unsteady' TSD equation, and Williams et al. [43]

for the unsteady TSD equation run in both steady and

unsteadv modes with and without a simple boundary

layer correction procedure. In these studies the

nonuniqueness exists for both steady and unsteady flows.

For steady flows, it manifests itself in the form of mul-

tiple, significantly different solutions at one angle of at-

tack. These multiple solutions exhibit dramatically differ-

ent values of circulation, and therefore, dramatically dif-

ferent values of lift. For unsteady flows it manifests itself

in the form of non-zero mean lift for harmonic pitch

oscillations of a symmetric airfoil at a zero mean angle

of attack. For both stead), and unsteady computations,

the number of iterations or time-steps required for" the

nonuniqueness to appear is large, being an order of

magnitude more than the number of iterations required

for tight convergence of unique computations.

The nonuniqueness has only been exhibited in two-

dimensional simulations, i.e., airfoil computations, that

utilize the conservative form of the full potential or TSD

equations. For a particular airfoil, the nonuniqueness

occurs over a narrow freestream Mach number range
invoMng transonic flow conditions, and thus, involves

a shock wave on at least the upper or lower airfoil

surface. This anomaly has not been demonstrated for the

nonconservative full potential equation (see Salas et al.

[41]) nor for the unsteady' full potential equation (see

Murthy [44]). It also has not been demonstrated for any

three-dimensional potential formulation involving tradi-

tional aerodynamic problems, e.g., transport wing or

wing-body computations. However, it can be demon-

strated in three dimensions for wing applications when

the aspect ratio is set to a large value, e.g., at or above 24

(see Hoist [45] ). For such computations, in the appropri-

ate transonic Mach number range, the nonunique solu-

tion exists at the wing root, where the solution is essen-

tialh' two dimensional in nature, but transitions to

a unique solution at the '_ing tip. Another interesting

characteristic is that a nonisentropic correction to the

two-dimensional conservative full potential equation (as

described in Section 3.3) restores a unique lift-angle-of-

attack relationship, at least for the cases presented in

Zi-qiang and Xue-Song [46]. Finally, McGrattan [47]
demonstrates that for transonic airfoil solutions with

vet\ weak shocks involving a 3%-thick airfoil, the con-

servative full potential and the Euler equations both

produce nonunique solutions, i.e., a significant nonzero

value of lift for a symmetric airfoil at zero angle of attack.

The two solutions are not identical, but are very close.

This suggests the nonuniqueness difficulty, as speculated

in earlier studies, is not due to the isentropic, irrotational

nature of potential formulations, but that the cause lies

elsewhere, perhaps in how the Kutta condition is imple-
mented.

More quantitative characteristics of this behavior are

exhibited in Fig. 9, where several lift versus angle-of-

attack plots are presented. The first three curves in this

figure; CFP (2D), conservative full potential in two di-

mensions; Euler (2D); and NFP (2D), nonconservative

full potential in two dimensions; are from Salas et al.

[411. The last curve, CFP (3D), is a three-dimensional,

conservative full potential result from Holst [45]. The

first three curves have been computed using two-dimen-

sional algorithms for the flow around an NACA 0012

airfoil at a freestream Mach number of 0.83. Because of

the multi-valued nature of the CFP (2D) curve, its com-

putation was achieved by speci_,ing lift and computing

the angle of attack as described in galas et al. [41]. In

each of these cases, the solution is obtained using a fine

grid with a tight convergence criteria, i.e., numerical

errors have been minimized. The last curve presented in

Fig. 9 is computed using a three-dimensional algorithm

for the flow about an isolated-wing with NACA 0012

airfoil sections at zero sweep, a taper ratio of 1.0 and an

aspect ratio of 8.0. Thus, the root station of this simula-

tion approximately matches the other two-dimensional

simulations displayed in Fig. 9.

From Fig. 9, the following observations can be made:

(1) The two-dimensional conservative full potential curve

is nonunique, exhibiting three solutions for each angle of

attack in the approximate range - 0.3 _ < _. < 0.3L The

lift-curve slope for this result is nonphysical, exhibiting

the wrong sign in the anomalous angle of attack range.
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Fi K 9. Lilt curves obtained from several different CFD codes for
the NACA 0012 airfoil at a freestream Mach number of 0.83.
The first three curves in this plot have been taken from Sa]as
eta], [41] and the fourth curve [CFP (3D)] is from HoM [4.1].
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(2) The Euler and nonconservative full potential curves

exhibit unique results, i.e., one value of lift for one angle

of attack. (3) The three-dimensional conservative full

potential curve also exhibits unique results. The above

observations describe the major known steady-flow char-

acteristics of the full potential nonuniqueness problem.

Explaining the cause is more difficult. It appears to be

formulational in nature and not due to any aspect of

numerical implementation, but a more definitive ex-

planation is not available as of this writing. A primary

ameliorating factor is that the nonuniqueness does not

appear in traditional three-dimensional aerodynamic

problems, where virtually all potential applications are

implemented.

3. Algorithms and applications

3.1. Earh' TSD potential equation algorithms

and applications

The first computations with a transonic potential for-

mulation for an aerodynamic application involve the

transonic small-disturbance (TSD) potential equation.

As described in the previous chapter, the TSD potential

formulation has the additional assumptions beyond the

full potential formulation that the flow be aligned with

a particular coordinate direction (usually the x-coordi-

nate) and that only' small changes or disturbances in the

velocity components exist throughout the entire flow

domain. In addition, flow tangency boundary conditions

are applied along simplified surfaces that only approxim-

ate the geometry of interest, e.g., along the chord line of

an airfoil instead of the actual airfoil surface. These

additional assumptions greatly simpli6" implementation

of a TSD potential equation solver, but are severely

tested at stagnation points.

A key breakthrough in the field of CFD was the

discovery of "type-dependent differencing" in 1971 by

Murman and Cole [48] and was demonstrated using the

TSD potential formulation for transonic airfoil simula-

tions. Prior to 1971, simulation of transonic flow using

a potential formulation was not possible. Inconsistencies

between subsonic flow regions, which require central-

differencing, and supersonic flow regions, which require

upwind-differencing, caused numerical difficulties. The

Murman-Cole algorithm "switches" the differencing

type from central to upwind or vice versa as dictated by

the local Mach number, maintaining stable operation for

transonic flows, even those with strong shocks. This idea

was extended to axisymmetric bodies by Bailey [49] and

Krupp and Murman [50] and to three-dimensional iso-

lated-wing applications by Bailey' and Steger [5I], Bal-

lhaus and Bailey [52] and Newman and Klunker [53]. In

all these applications the nonconservative form of the

TSD equation is used.

The conservative form of the TSD equation is soh'ed in

two dimensions by Murman [54] and in three dimen-

sions for isolated wings by Bailey and Ballhaus [553. The

type-dependent spatial difference scheme used to soh, e

the two-dimensional TSD potential equation in conser-

vative form can be presented by considering

f_ + ,q,. = 0,

which is a reformulation of the conservative TSD poten-

tial equation where

f= (1 - ._4_)<_- _M_,(;,+ II,pL ._j= o,..

The f and g quantities represent mass fluxes (or more

appropriately, perturbations to the freestream mass

fluxes) in the x and y directions, respectively. Note that

all variables are inside the outer differentiation, a stan-

dard characteristic of conservation form. A discretization

scheme valid for both subsonic and supersonic flow re-

gions is given by

1 • 1 (e
7(_ _:,j -_-,2._1 + _..J_j, _: - _/_.,-,,_)= 0.

where the i and ./ subscripts indicate location in the

finite-difference grid. such that x = lax and ! = jay, and

ris a modified flux defined by

_+_,:.j = #_.f_+ ,,2o + (1 - _/kf, _:,i.

In the above equation, u_ is a switcbing function defined

by

f l, Mi. <<.i,

Czi = [0, Mi,j > l

where M,.j is the local Mach number computed at point

i,j. The above differencing scheme contains four different

schemes or operators: (1) subsonic operator (#_ = 1,

•_i-a = 1), (2) supersonic operator (#i = 0, #,_ 1 = 0), (3)

sonic-point operator (#_ = 0,/_L___ = 1), and (4) shock-

point operator (#_ = 1, lq_ _ = 01. This scheme is auto-

matically second-order accurate and centrally' differenced

in all subsonic regions of flow and first-order accurate

and upwind-differenced in all regions of supersonic flo,a.

This scheme is also conservative, i.e., the fluxes in each

cell have an identical flux in the immediately adjacent

neighboring cell, such tha_ all internal fluxes cancel iden-

tically.

A typical example (taken fiom Bailey and Ballhaus

[55]) showing both TSD nonconservative and conserva-

tive inviscid pressure distributions compared with experi-

ment is displayed in Fig. 10. These results are for a swept,

isolated-wing configuration (ONERA M6) at rather

harsh transonic flow conditions, M:_ =0.92, _ = 3'.

Note that the nonconservative results are in better agree-

ment with experiment than the conservative results.

However, both results still suffer serious disagreements.

In particular, both computational results fail to predict
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the forx_ard s\_ct-_I ,,hock that i_; evident in the three

outboard star{oils o[" the experiment. The large disagree-

ment m the upper-surface aft-shock location for the

conservative result is primarily caused by strong-

shock boundar:-Iaver interactions, which arc not

mode'led in dfis in_iscid computation. The conservative

method does _l better iob of predicting the weaker shock

wa_c on the lower _ing surface. Thb, resuh is largely

inlcrc,,qing because it qaows an earl\ level of adaie_ emenI

in modeling trap, sonic: flow using the three-dimensional

TSD equation.

Numerous cfR>rts utilizing the TSD potcmial equation

for .,,imtdating aerodynamic flows about u large variet3 of

three-dimensiomd configurations have been reported in

tl_e literature. Examples of some of these: efforts mchlde

Rt,hlfs :rod \'anino [5{,]. Schmidt and Hcdman [57] and

\an der Vooren el at. [5g.24] for wing and wing'body

applications- Mason et al. [597 for wing and wing-hod3

applications with x b,cv,us corrections" Albone et al. _6(}]

and Virman [t,l_ for wing. _ing-bod3 and _ing-body-

muhiple-:,tore con!putations v, ith and wid_m_t viscous

corrections: Rzte E(_2j and Rae and Lordi E63] l\_r three-

dimensional cascade computations: Shai-_kar and Malm-

uth [64] h_r xxine-b_,d\-canard computations: Phillips

and \Vaggcmer [65] [or wing conTptlt:.ttic_n_, mc,tlllted

m>idc v, ind-;u!_ne'. _ ztI,Is: zind B,,ppc U(_(,T}:rod ]?,_,ppz ;illd

Stern [67] for wing, wing-body and wing-bod3,-storc-

winglet computations. Most of these efforts utilize the

nonconservative form of the TSD potential equation due

to the fortuitously improved agreement with experi-

mental pressure distributions. [in some cases the conser-

vative form of the TSD equation is available as an _ption

as coding differences between these tu'o TSD potential

governing equation fOl'l'l]S is not that great [compare

Eqs. (18i and 119)_].

Most of the TSD potential applications jusl listed

utilize a sheared-stretched Cartesian-like mapping pro-

cedure, whereby the wing phmform is mapped to a rec-

tangle Isee Fig. 111. Thus. each span station has the same

number of grid points along the chord. The wing leading

edge is positioned to lie between two grid lines. Thus. the

infinite slope problem a_ the leading edge of a blunt wing

does not cause any diIliculties in applying the tangent3

boundary condition. The invalidity of tl_e small distur-

bance assumption near the leading edge stagnation line is

not changed by this grid placement strategy, but I;ti least l

the slope is never actually infinite. In general, poor resuhs

are obtained from any TSD formulation in the vicinity of

a bhmt leading edge staenation point line.

Several of the TSD methods listed abo',c ulilize

the method of grid embedding {first introduced b_

Boppe [(_6_ 1. Tiffs _q'_pt'c.:_:h use,, _t co',t!-,;c ,_,rid !,, c_,_cr
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Pi 7 II Scl_cmalic of a typical TSD pol.c:niial grid for :in isnklt,.:'d-_in<- ' gcomcl.r3 showing _llearing and sticlching, lat Wing

clo_.-_>0ciit,llLi] t ic_.\, t t-i} \¥ii17 phtllfOln] \'io '_<.

tt_e entire flow field from far-field boundary to wing sur-

fLiCc'alld a localized fine grid lo resoh, e detail n_2ill lhe wing

surface, lnfc_rmafion from the outer coarse grid is passed

to the fine inner grid outer boundar', via inlerpotation.

When the in_crfacc between the fine inner grid and the

COLtISC ouler grid is placed sufficiently far [rum the wing

surface, no deterioration in soluticm accuracy tit the wing

surface can be delccled. This concept is very attractive

because it drama!icall3 reduces tile lotal number of grid

points lind the total Linlounl of compuler time required to

achie',e a gixen Icvel of accurac 3 al the wing surface.

In all of the TSD retErence_, presented above fine ilel-

alien scheme utilized is .,,uccessive line ovei-rclaxaiion

(SLORt. which was a very popular potential equation

relaxation schcnle for the 1970,', and early I980s. A Lvpi-

cal SLOR iiic{hod ftH s(>hinL, Ixtplace's eqLlaliOl_ [see

F]q. (13)] is gi\cn b_

I ' C,"/( 1 ,; -: .i

1 c";: " ,_ - <:,,'_,',) = o. t_4)
" At': :'"' 1 - -('i.i

\\hero lhe i and i >ubscripts denote position in the finite-

difference grid and the n superscript denotes iteralion

numbcI-. Fhe n 4 1 sLiperscript is an intermediale i_er-

atiori It\e] u>,cd to obtain the s? -- I level by

<:':'7 ' = <"+,''7.17 ÷ II - <',I,:,L

Iii {}lC L_,b("', c' CqtKttiOI1 the pLtl';.lllletcr cJ }s LL "!ei;t,/alion

l'LtCtOI", l'o _lblaill LII] lhc n + I wilLieS f'c)I e:tCi_ i = cc,n-

slcmt line requires line inversion of :l sca[ar i.ridiagonal

llqLtlI'i'<. }-]ecat!,ce the grid poin!> along the i ! = con-

stanl line are updated prior _.o the i= constant line

{a.qsuming lhe iteration scheme starts at i = 1 and pro-

ceeds to Ihe Inaxinmm value of ii. the values (.ff o al / - 1.

/ have aheady been updaled, and thus. the superscript on

&i *.r is #l + 1. II should be noted tl_ai lhe abo',e SLOR

scheme is valid for bolh :he sm-lll-distui-bance potenlia]

and the full potential k)rms of Laplace's equation, with

the only differences entering through lhc boundar3 con-

dilions.

A standard \'on Neulnann stalbililx anah'sis t,f the

abo_e scheme shows that (_) racist be boullcted in,,' (I and

2 for a stable iteration to result. \:ahies cff _,Japproaching

2 generall? produce the fastest convergence wi_.h _,_= 2

being optimum as the number of grid poinl.s becomes

infinite Isee Garabedian [6{';] or Ames [26] for more infor-

matiol_ on this pointi. When <, > 1 the above scheme is

said to be oxerrelaxed, and when (u <.: 1 the scheme is

said to be underrelaxed. When +,J = 1 the above scheme

bcconles line H:.iditional line Gau:s-Seidcl relaxation

scheme.

The use of "overrelaxalion'" in relaxation schemes i>

a ver3 important deve]opment tl_al greatl', impro\es con-

vergence elTlciency. It can be estimated (sec -'_mes [2(.,] t

thai the i1cimber of ileiations N,,. icqtiired to drop the

errof by :k r , (_]'Ctei'S of magnitude for _he line Gauss

Seidel scheme is

\:' (35)

:ind Vnr _hc' ',_piimall3 c_\errcht_,cd 5;I ()R schelnc is

-'\ c

\ , \
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where k is the grid spacing used in the computation. It is

easy' to see from these estimates that the SLOR scheme

can be one to two orders of magnitude faster than line

Gauss-Seidel for problems utilizing fine grids. Although

these theoretical convergence estimates are only (strictly

speaking) valid for Laplace's equation, qualitatively sim-

ilar trends for convergence efficiency are exhibited for

nonlinear potential formulations. Despite the significant

enhancement in convergence efficiency offered by over-

relaxation, other methods are still significantly faster, as

will be seen shortly.

3.2 Early jid/ potentml equation algorithms

and applications

The first nonlinear full potential algorithms were de-

veloped by Steger and Lomax [69] and Garabedian and

Korn [70] and were utilized to simulate transonic flow

about airfoils. The latter approach uses conformal map-

ping to map the domain external to the airfoil to a unit

circle. This provides an elegant grid generation option

and allows for simplified application of boundary condi-

tions. Both of these approaches utilize the nonconser-

vative form of the full potential equation and thus, pro-

duce shocked flows in which tile position of the shock is

affected by the numerical scheme. Nevertheless, these

approaches, primarily the Garabedian-Korn algorithm,

have often been used for many types of applications.

Examples using the Garabedian-Korn code, including

applications with a boundary layer correction procedure,

are presented in Bauer et al. [71].

Throughout the 1970s numerous additional develop-

ment efforts produced many two-dimensional and axisym-

metric codes designed to soh, e the nonconservative full

potential equation for transonic flows. For example, Car-

lson [72] produced a transonic airfoil analysis code that

also included an inverse design option. South and

Jameson [73] produced the first axisymmetric full poten-

tial flow solver called RAXBOD (see Keller and South

[74] for additional details). This methodology is capable

of simulating flows over sharp or blunt axisymmetric

bodies at transonic and tow supersonic speeds, h,es and

Liuterlnoza [75,76] produced a transonic cascade analysis

p,ocedure with or without boundary layer correction.

This two-dimensional approach has a stream-tube con-

traction cor,'ection that provides an approximation for

three-dimensional effects. A number of codes have been

produced for axisymmetric transonic inlets including the

work of Arlinger [77]. Baker 1-78], Caughey and Jameson

[79] and Reyhner [80]. The iteration scheme in the major-

ity of the above efforts is SLOR or a variety of SLOR.

The first three-dimensional transonic full potential sol-
ver (called FLO22), which also utilizes the nonconser-

vative form of the full potential equation, was developed

by Jameson [81]. This code utilizes the SLOR iteration

scheme and a sheared-parabolic conformal-based map-

ping that effectively unwraps an isolated-wing into a rec-

tangular domain. A typical FLO22 grid displayed in the

physical domain is shown in Fig. 12. A key aspect of the

FLO22 algorithm is the concept of "rotated differenc-

ing". In this approach, the full potential equation is
transformed into stream and stream-normal coordinates

[see Eq. (27)]. The terms contributing to cO,,,,are always

centrally differenced. The terms contributing to cO,, are

centrally differenced in subsonic regions and upwind

differenced in supersonic regions. With this approach, the

computational domain of dependence always includes

the physical domain of dependence, thus insuring im-

proved stability for any orientation of the velocity vector.

Another important contribution of this work is the de-

scription of the relaxation scheme as an iteration in

"time", i.e., a nonphysical time-like coordinate that be-

haves like the hyperbolic physical time coo,dinate. An

important result of this time-like analysis is that tem-

poral damping terms [of the form 4)_, _ (u,,'q)_:,, +

(v/q)cOy,] are required in supersonic regions of flow for

a stable iteration scheme. For more information about

this algorithm see Jameson [81] and Jameson et al. [82]

or for information about FLO22 with a simple viscous

correction procedure see Newman et al. [83].

A typical FLO22 surface pressure distribution com-

pared with experiment (taken from Henne and Hicks

[84]) is shown in Fig. 13. The experimental results dis-

played in this figure are for a supercritical wing low-

mounted on a fuselage. The computational results are for

only the wing portion of this geometry. A viscous correc-

tion is added using a two-dimensional strip approach.

The flow conditions for this simulation include

M_ = 0.8 and _ = 2 °. Agreement between the computa-

tion and experiment is generally good at all wing span

stations. Note in particular that the double shock

character for the upper-wing-surface solution is evident

in both the experimental and computational results.

Plane_

M

Fig. 12. Typical three-dimensional grid arrangement used in the
FLO22 code involving a sheared-parabolic conformal-based

mapping procedure, taken from Henne and Hicks [84]
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Additional three-dimensional full potential applications

based on nonconservative form include the inlet work of

Reyhner [85], the wing simulations of Forsey and Cart

[86-], the cranked-wing applications of Chang and

Tauber [87], and the quasi-unsteady efforts of Chang

[88], Chang and Tung E89_, Arieli et aI. [90] and Egolf

and Sparks [-91]. The latter four efforts are focused on

helicopter rotor blade applications invoh, ing either hover

or advancing blade transonic flow simulations.

3.3. Conservatiz_e jull potential equation algorithms

The primary goal of this section is to present spatial

discretization schemes for solving the conservative full

potential equation. The main emphasis is on finite-differ-

ence and finite-volume schemes. Finite-element schemes

will be discussed in Section 3.11.

3.3.]. Fini:e-vohmw schemes

The first full potential solution method using conserva-

tive form was developed by Jameson [92] for soh'ing

transonic airfoil flows in 1975. This work was followed

closely by a series of very successful three-dimensional

full potential solvers cal]ed FLO27, FLO28. and FLO30

[93-95]. The FLO27 code is capable of solving transonic

flows about isolated wings or wings mounted on infinite

circular cylinders. The FLO28 and FLO30 codes are very

closely related derivatives of FLO27. but have more

sophisticated abilities for treating the fuselage. A com-

parative study of these FLO codes can be found in

Verhoff and O'Neil [96], where, in particular, the various

fuselage modeling capabilities are evaluated. The actual

grid mapping transformation used for most FLO27 and

FLO28 wing calculations is very similar to the trans-

formation used for the FLO22 code (see Fig. 12). The

transformation used in the FLO30 code is somewhat

more sophisticated and is described in detail in Caughey

and Jameson [95]. All of the above FLO codes utiIize the

SLOR iteration scheme. Two examples where FLO30

has been upgraded with the addition of boundary' layer

corrections are described in Street [971 and Woodson

et al. [98]. An example where the grid generation
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capability used in FLO28 has been upgraded using the

general grid generation capability of Thompson et al.

[99] is described in Yu [100]. In the latter effort the

improved grid generality is utilized to produce a trans-

onic flow solution about a wing-body-nacelle-strut con-

figuration. An example where the FLO27 code has been

significantly, enhanced is the work of Chen et al. [101]. In

this effort a boundary layer correction code and an

improved two-zone grid generation capability are utiliz-

ed to compute transonic flow about a fuselage-pylon-

nacelle configuration including both power-on and

power-off cases.

The finite-volume spatial discretization scheme used in

the FLO-series of codes (presented now in more detail) is

designed to approximate the three-dimensional conser-

vative full potential equation written in general non-

orthogonal coordinates. This scheme, presented in two

dimensions for brevity, is designed to solve

+ = O.

/, = 1 + (),1_, - U05_ - Vd),,) (37)

where the above equations use p._ and a:_ nondimen-

sionalization. They are easily' obtained fiom Eqs. (30a)

and (30by by setting all derivatives with respect to time

and the (-coordinate direction to zero. Definitions for the

contravariant velocity components (U and I') as well as

all metric quantities can be obtained from Eqs. (31a) and

(31b) by making similar simplifications. The spatial dis-

cretization scheme is given by'

where (f: and ii,_ are backward, first-difference operators

defined by

;el )_.:-- i )_.j- ! )_-:.j, _,,( )_._= ( ),._- ( h._- _, (38)

and the t and g fluxes are defined by'

/;+,':.i = 2L \ j ) , -'.,-
i+ 12

_h,j+__" =2L \ j /..R2,j._2

\ J ],+l.:.i 1--1'

(p v '_+ ,7-),_ 2

Computation of the above individual fluxes requires

values of the density, the contravariant velocity compo-

nents (U and V), and the determinant of the transforma-

tion Jacobian J, which, in turn, require derivatives of x,

3' and 05 With respect to _ and _7.These computations are

all performed at cell centers, i.e.. at i+ 1..2./* 1/2, by

using (for examplel

¢'_i,_, "_•_, ,_= }(05,-_.> _ - 05,.,-, + (_. ,.i - 05<,).

The above spatial discretization scheme is very compact

and requires only a single density.' evaluation per grid

point. However, this scheme has a tendency to produce

oscillator.,,* solutions in which the i +j odd points are

decoupled from the i + j even points. This situation can

be corrected by adding a suitable recoupling term A of
the form

Ai i = ---(1_(1,1 -- A --- - A 2

• 2 " kJ\ 1 a2 i+12.i-

6e (i,,05_,

where the parameter e, is a constant usually, set equal to ½

and 6"¢ and 6", are forward, first-difference operators

defined similarly' to the backward operators in Eq. (38).

The resulting scheme becomes

7_.- 1,2 j -'I"- "_,,.qi,j+ 1,2 4- di,j = O.

Addition of this new term recouples the odd and even

points and represents a suitable spatial differencing

scheme for subsonic regions of flow.

This scheme is stabilized in supersonic regions of flow

by the explicit addition of artificial viscosity terms given

by'

P,,j = 2-_,(U2b=. + UV&c_,Tl$, i

vp

O_.i=j-gy_-(t'_"(1:(1,,+ V:_,,,}05,.i,

where the switching function v is defined by

v= maxt0, 1 - M_._),
\

and the operators (5,, 6,, a¢¢, and ,5,, are first and second

central-difference operators defined by (for example)

a_( ),.j = _[( )_-_.i - ( 1,-, .i].

(1_,()_,_- ( )_., ._ - 2( )_._+ ( )___,,.

The M, parameter used above is a user-specified critical

Mach number, defined in such a way that the spatial

differencing scheme uses the subsonic scheme for values

of local Mach number below Me and the supersonic

scheme for values of the local Mach number above M_.

In other words, the transition from central to upwind

does not necessarily take place at the sonic line. Note that

Me _< 1 for stability'•

The final spatial differencing scheme is given by

+ Ai.i = 0. (39l
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where the P and Q terms are defined by

f Pi.j,

Pi+ I.2.i = [_ Pi+ lj,

-. = t O-i'j'
Oi j+ 1,'2 k -- Qi,i+ 1,

_Ti4 1:2,) > O,

Ui+ 1:2,./ < 0,

gi,j+ 1,2 > O,

Vi,j+ 1,r2 < 0.

(40)

A typical result computed with the above formulation is

compared with experiment in Fig. 14. The geometry used

in this comparison involves a wing/fuselage configura-

tion with a supercritical wing. The wing quarter-chord

sweep is 25 °, the wing aspect ratio is 8.0 and the thick-

hess-to-chord ratio is 0.12. The numerical results have

been computed using the FLO30 computer code modi-

fied t, ith an integral boundary layer correction proced-

ure, which models the wing boundary layer thickness, the

wake displacement thickness and the wake curva-

ture (see Street [97]'1. The riot, conditions for this case

are M,, = 0.819, _. = 1.96 °, and Re_ = 6 × 10 _, where e is

the mean wing chord, and the experimental results are

from Hinson and Burdges [102]. Note that the numerical

results, including the shock strength and position, are in

excellent agreement with experiment at all three span

stations displayed.

Additional full potential riot' solvers with three-

dimensional capabilities include the codes of Chattot

et al. [103], Eberle [104] and Chen and Caughey [105].

The first two codes are capable of simulating the flow

about isolated wing geometries, and the latter code is

capable of simulating the flow about axisymmetric inlets

0 [] _ Experiment / _,

.Computation ?

I/x "%. /

-1.2

0 e' -.4

.4 ROOT

.8 I I I I I
0 .2 .4 .6 .8 1.0

X/C

Fig. 14. Wing surface pressure coefficient distributions for
a wing/fuselage configuration, M,- = 0.819, :_= 1,96_,
Rea = 6 × 10_', taken from Street [97].
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at angle of attack with and t'ithout center bodies. All

three of these codes utilize the SLOR iteration scheme,

although the first code also has an approximate factoriz-

ation (AF) option (which is discussed in Section 3.4). All

three of these codes solve the conservative form of the full

potential equation, although the first and third codes also

have independent nonconservative options.

3.3.2. Artificial densi O, schemes

Another type of spatial discretization scheme for the

full potential equation written in conservative form is the

artificial density scheme. This discretization scheme has

been independently developed in several different forms

by Eberle [104], Holst and Ballhaus [106] and Hafez

et al. [107]. These approaches, although not identical,

have certain similarities which can be attributed to the

earlier work of Jameson [92]. Jameson's work is charac-

terized by a scheme with an explicitly added artificial

viscosity term [see Eqs. (39) and (40)]. The artificial

viscosity term is designed to provide an upt, ind bias for

supersonic regions of flow, but does not affect the central-

ly differenced scheme in subsonic regions. The artificial

density scheme uses this approach with one basic simpli-

fication: the upwind bias is accomplished by an upwind

evaluation of the density. The three procedures compute

this upwind density quantity in different ways.

In the procedure of Hoist and Ballhaus [106] the

finite-difference approximation for the full potential

equation t, ritten in two-dimensional curvilinear coordi-

nates [see Eq. (37)] is given by

\ J /i,j+ 1,,'2_ i+l:j a,,[-- = 0, 141)

where the density coefficients _ and _ are defined by

7'i+ ll'2.j = [(1 -- V)p]i+ l,;2.j 4- Vi+ l/2.jPi+r+ I,,2,j, (42a)

Pi*j-- 1,'2 = [(I -- V),O]/,./+ 1/2 -_- lJi.j+ [/:Pi,j-'-S" 1,2" (42b)

The r and s subscripts used above control the upwind

direction of the density coefficients and are defined by

{+ l, U,_12..i <0, {4- 1, 1'i.,_12 <0,
i.= S=

1 U,'. 1 :j > 0, - 1 Vi _ 1.2 > 0.

(42c)

The switching or transition function v depends on the

local Mach number M_.j and the flot, direction and is

defined by (e.g., looking at only the _-coordinate direc-

tion)

j'max[(M_.j - 1)C, 0], U__ t2.i > 0,

r___,z.j = (max[(M2 +ls_IIC,0], U¢_12.i<O, (42d)

where the quantity C is a user-specified constant usually

set to a value between 1 and 2.

The spatial differencing scheme described by Eqs. (41),

(42a)-(42d) provides an upt'ind influence in supersonic
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regions without the explicit addition of an artificial vis-

cosity term. Instead, the stabilizing upwind influence is

produced by the upwind evaluation of the density in an

otherwise centrally differenced scheme. This approach is

significant because it simplifies the technique for includ-

ing an upwind influence into the residual operator. As

with the Jameson-Caughey finite-volume scheme [see

Eqs. (39) and (40)], the artificial density approach closely

approximates the effects of a rotated differencing scheme.

This aspect contributes to the stability and reliability of

the overall algorithm and allows computations of many

difficult strong-shock cases.

Another variation of the artificial density spatial differ-

encing scheme has been presented by Hafez et al. [107].

In this scheme, which is sometimes called the artificial

compressibility scheme, the density coefficients in both

coordinate directions are defined by

7oi,i = pi.j - _'i._(p.,As)r.j, (43a)

where

(t.',_s)i.j = - 6_pAx + - a,pAy. (43b)
,,q / i,j ,,q fi.j "

The double-arrow notation indicates a first-order differ-

ence, always chosen to be in the upwind direction; s is the

local streamwise coordinate direction; and v is a switch-

ing function defined similarly to Eq. (42d).

Many researchers have used one of the artificial den-

sit)' spatial discretization approaches mentioned above

because of the simple, reliable way in which the super-

sonic region is stabilized. A few of these applications

include Wong and Hafez [108] for airfoil computations;

Farrell and Adamczyk [109] Akay and Ecer [110] and

Deconinck and Hirsch [111] for cascade computations;

Shankar [I I2] for supersonic space marching problems;

Green and South [113] for axisymmetric computations;

Eberle [114,115] for a variety of different applications;

Steger and Caradonna [116] and Goorjian [117] for

unsteady computations: Ecer and Spyropoulos [118] for

wing-body computations: Neel [119] for wing computa-

tions; and Holst and Thomas [120] and Holst [121,122]

for wing and wing/body computations.

for this type of scheme. Following Van Leer [t31] and

Stooff [127] and using a one-dimensional discretized

equation given by

1 -- (_-ii), ,2],

the Godunov and Engquist-Osher flux upwind schemes

are given by

(pu)i__ : __= p*u* - max(A + l;2, Ai-_12) (Godunov),

(pu)i+ 1.'_ = p'u* -- A_ t'2 - A,.'-_I-" (Engquist-Osher),

where

j'p*u* - (pu)i_ 1:2 if u/_ l;z > w''_,
A[" l ,2

)0 if ui- 1,,'2 < It*,

f O if ui + l,'2 > U*,
AT-l,_

p'u* -(pu)i,l.,,_ ifui+Lz < u*.

In the above equations p* and u* are sonic values of the

density and speed, respectively, and the overbar quantit-

ies represent the upwind evaluated fluxes. Both of these

schemes produce standard discretizations in regions

away from sonic lines and shock waves. At sonic lines
and shock waves these schemes differ from standard

schemes and are designed to produce smooth solutions

through sonic lines and sharp, monotonic shock waves.

The only difference in the above two schemes is in the

shock point operator. An additional example of the flux

upwind scheme derived from the approach described in

Osher et al. [129] is presented in Section 3.10 in the

context of a finite element method.

Results comparing a number of supersonic stabiliz-

ation schemes including both artificial density and flux

upwind schemes are presented and compared in Habashi

and Hafez [132], Volpe and Jameson [133] and Dulik-

ravich [134]. For several applications involving weak

shock waves the flux upwind scheme is superior in shock

capturing sharpness. For stronger transonic shocks the

two approaches produce similar results. For convergence

reliability and efficiency the two approaches (when using

the same iteration scheme) are also similar.

3.3.3. Flux upwind schemes

Another type of supersonic flow stabilization method,

similar to the artificial density approach, is the flux up-

wind scheme. This type of scheme has been reported by'

Engquist and Osher [123], Goorjian and Van Buskirk

[124], Goorjian et al. [125], Boerstoel [126], Slooff

[127], Osher et al. [128,129] and Hafez et al. [130]. The

basic idea is to evaluate the entire flux in the upwind

direction using a special construction that will produce

good shock capturing characteristics and smooth flow

gradients through the sonic line, i.e., tess shock smearing

and no expansion shocks. There are several approaches

3.3.4. Entropy and vorticiO, corrections

An interesting characteristic associated with the con-

servative full potential equation spatial-discretization

scheme is the ability to add entropy corrections at shock

waves. Because of the isentropic and irrotational approx-

imations associated with all traditional potential formu-

lations, shock wave capture is accurate only for weak

shock waves (see discussion in Section 2.9). As the shock

wave strength increases the error increases. Several differ-

ent entropy' correction procedures designed to approxim-

ately correct this problem are available including the

techniques of Hafez and Lovell [135,136] and Klopfer
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and Nixon [137]. The basic idea involved in this ap-

proach is to use a nonisentropic expression for the den-

sity given by (see Bridgeman et al. [138] for a derivation)

,0 = pisene - As R,

where ,%on is the traditional isentropic density computed

from (for example) Eq. (30by, R is the real gas constant,

and As is the increase in entropy across the shock wave

given by [32]

As 1
-- in I2;M?-_(:,-1)]

R :.... I L 7 +1

_ :-2-' lnF (r+l)M_ 15'- 1 L(:- 1)M +: "

In the above equation M_ is the Mach number just

upstream of the shock wave. In this implementation the

flow is assumed to be steady, and the shock wave is

assumed to be normal to the local velocity vector. Be-

cause the entropy convects with the flow, its material

derivative is zero everywhere except at a shock wave.

Thus, the full potential equation in its traditional isen-

tropic form can be used everywhere except at shock

waves (see Bridgeman et al. [138]). At the shock wave,

the density is modified using the nonisentropic density

formula. Identification of the shock location is simply

achieved (for normal shocks) by finding each grid cell

where the Mach number decreases through one in the

positive flow direction. Hafez and Lovell [136] present

an approach for applying an entropy correction to ob-

lique shocks, which requires identification of the shock

location and its angle with the local flow direction. How-

ever, difficulty in numerically identifying these quantities,

coupled with the fact that entropy corrections for oblique

shocks are not as important as for normal shocks, has

generally dissuaded researchers from attempting entropy

corrections for oblique shocks. Despite the steady flow

assumption, this approach has been successfully' applied

to unsteady problems by assuming quasi-steady flow. It

should be noted that the above approach assumes no

correction for vorticity. A simple vorticity correction

model consistent with the above entropy correction

model is also possible. Two examples are presented in

Kinney and Hafez [139] and Batina [140].

Numerous applications utilizing the entropy (and vor-

ticity) correction procedure described above (or a vari-

ation thereof) have been presented in the literature for

extending the range of applicability' of various potential

formulations. Examples of these applications include

Siclari and Visich [141] and Siclari and Rubel [142] for

supersonic marching solutions, Fuglsang and Williams

[143] and Batina [140] for solutions of the unsteady

TSD equation, Whitlow [t44] for airfoil calculations,

Bridgeman et al. [138,145] and Chen and Bridgeman

[146] for unsteady helicopter rotor applications, Zi-qiang

and Xue-Song [46] for airfoil, wing and wing-body con-

figurations, and Kinney and Hafez [139] for transonic

wing computations. A numerical result showing differ-

ences between the traditional isentropic full potential

approach and the same computation with an entropy

correction is presented in Section 3.9. The above entropy

(and vorticity) correction procedure allows the poten-

tial equation to compute flows with stronger shock

waves and produce results that approximate the Euter

equations.

3.3.5. Freestream consistency conditions

Grid generated irregularities, such as mapping singu-

larities, rapid stretching, cell skewness, or grid coarse-

ness, exist in many applications, and cause accuracy'

difficulties for most spatial discretization schemes, espe-

cially finite-difference schemes. Ideally', a stable flow-sol-

ver algorithm, which can handle all of the above-men-

tioned irregularities, yet provide uniform accuracy over

the entire grid, is desired. In a spatial discretization

formulation that utilizes the general mapping procedure

described in Section 2.8, it can be shown that if the metric

differencing is implemented properly', the truncation

error associated with a freestream distribution of the

dependent variable is zero. That is, freestream is admitted

as a solution to the finite-difference equations. If the

truncation error associated with freestream flow is zero,

then accuracy for any' type of solution will be improved.

This type of procedure is addressed in Pulliam and Steger

[147-1 for the Euler equations, but is not used because of

the small improvements in accuracy obtained on smooth

grids. Thomas and Lombard [148] and Hindman [149]

also study geometrically induced errors associated with

metric differencing and find that certain procedures are

better than others.

All of the above work is associated with the Euler

equations. Chattot et al. [103] present a spatial differenc-

ing scheme which provides perfect freestream capture for

the full potential equation. However. the full potential

equation is not written in conservative form, i.e., the
metrics are outside the main flux differentiation. On

smooth grids, where metric variation is small, this formu-

lation behaves like conservative form. Flores et al. [150]

present a freestream-preserving, spatial differencing

scheme for the conservative full potential equation writ-

ten in general curvilinear coordinates [see Eqs. (30a) and

(30b) and the associated metric definitions]. Unlike the

Euler equation scheme presented in Pulliam and Steger

[147] which produces perfect fl-eestream capture with

a single consistency condition, the full potential equation

requires three conditions. The first condition is asso-

ciated with the density calculation and is developed as

follows (assuming two-dimensional steady flow). The

density can be written solely as a function of fluid speed.

Thus, the numerical prediction of freestream density' re-

quires the prediction of the freestream fluid speed. The
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fluid speed can be written as (using the physical domain

metrics from Section 2.8)

q2 = j:[(), 05,: _ yg4,,,)2 + ( _ x,_,. 4- xg05,s)2].

Analytically speaking this expression reduces to q_: for

a freestream distribution of 05 in a trivial fashion. The key

question is: what is the value of q for a freestream distri-

bution of q5 when difference formulas are used to replace

all derivatives? The numerical evaluation of this expres-

sion reduces to q:_, if the difference operators used for all

_-differences involving x, y and q5 are the same, and if the

difference operators used for all r/-differences involving x,

y and 4) are the same. This can easily be verified by

substituting difference operators for all derivatives into

the above equation and then using the exact freestream

4' distribution to simplify. This is the first freestream

consistency condition.

The second and third consistency conditions are asso-

ciated with the flux calculation. For freestream flow the

numerically computed density is a constant (assuming

the density consistency condition is satisfied). Thus, the

full potential equation can be written as

+ =0.
J _ ., J ,_

where _4,.,and 4_, are given by

05x = J(Y,,4': - y:cfl,,) = u, qS_.= J( - x,,_: + x:4_,,) = v

If the difference operators for the {-differences involving

x, y and ¢ in each flux computation are the same. and if

the difference operators for all _l-differences involving x,

y and 05 in each flux computation are the same, respec-

tively, then the numerically evaluated values of 05._and q_y

(with a freestream distribution of 05) are equal to u_ and

v_. This is the second freestream consistency condition.

Note that the first and second freestream consistency

conditions are the same providing the density and flux

computations are performed in the same locations. In

general they are not, and thus, these two freestream

consistency' conditions must be considered as separate

conditions. As a consequence, the density and flux met-

rics must be computed and stored separately.

With 05._= u_ and _b,. = v_ the full potential equation

can be further simplified to

u_. (3'< - Ye,) -,- r_ (x,_ - x_,_) = 0.

For this equation to be satisfied numerically, the finite-

difference operators used for the flux metrics must com-

mute with the finite-difference operators used for the flL,x

derivatives. This is the third freestream consistency con-

dition. This last condition is the same condition present-

ed in Pulliam and Steger [147] and is required (by itself)

to achieve perfect freestream capture for the Euler equa-

tions. Extension of these metric-differencing require-

ments to three dimensions for the full potential equation

is st,'aightforward but tedious (see Flores et al. [150_ or

Thomas and Holst [151]). An additional paper address-

ing accurate three-dimensional metric evaluation for the

full potential equation using a finite-difference approach

is Jiang and Cai [152].

3.4. Approximate factorization iteration schemes

The vast majority of all full potential solvers so far

presented have utilized the SLOR iteration scheme.

Other iteration schemes, including approximate factoriz-

ation (AF) and multi-grid schemes, have superior conver-

gence characteristics, i.e., solutions are obtained with

fewer iterations and less computer time. Approximate

factorization iteration schemes can be examined by'

considering the following general two-level iteration

procedure

NC" + coL05" = 0, (44)

where C"( = _b "+1 - 05n) is the correction, L05" is the re-

sidual, which is a measure of how well the discretized

approximation to the governing PDE is satisfied by the

nth iterate of the dependent variable 05, and co is a relax-

ation parameter. The iteration scheme given by Eq. (44)

can be considered to be an iteration in pseudotime, where

the n superscript indicates the time-step level of the

solution, i.e., ( )"+ 1 _ ( ),, ~ At( ),. The operator N deter-

mines the type of iterative procedure, and therefore,

determines the rate at which the solution procedure

converges.

Classical successive over-relaxation (SOR) or SLOR

schemes effectively use only a portion of the L operator in

forming the N operator. As a consequence, the iteration

scheme is relatively simple, but the convergence rate is

relatively slow. In the AF approach, the philosophy is to

choose a representation for N that closely approximates

L. This, in theory, will produce a scheme with good

convergence characteristics. The procedure for obtaining

N consists of two steps: (1) linearize L and (2) factor the

linearized result. There are usually two factors for two-

dimensional algorithms and three factors for three-di-

mensional algorithms. The resulting scheme retains the

simplicity of requiring only narrow-banded scalar matrix

operations. The effects of both the factorization error

terms and the linearization are removed from the solu-

tion simultaneously by means of the iteration scheme.

Because each grid point is influenced by every other grid

poin t during each iteration, much faster convergence is
obtained.

Several early examples of AF schemes can be found in

Peaceman and Rachford [153], Douglas [154]. Douglas

and Gunn [155] and Yanenko [156]. In these pioneering

applications different forms of the AF scheme are

introduced and applied to purely parabolic or elliptic
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equations. Additional classical information regarding AF

schemes can be found in Mitchell [27]. The first applica-

tion of the AF approach to transonic flows governed by

potential formulations is the work of Ballhaus and Steger

[1]. Since this work many calculations using AF iteration

schemes have been obtained including Goorjian [117].

Steger and Caradonna [1t6] and Sankar and Tassa

[157] for time-accurate full potential applications; Bal-

lhaus et al. [158] for steady two-dimensional TSD

computations; Holst and Ballhaus [106], Holst [159],

Chattot and Coulombeix [160], Deconinck and Hirsch

[111], Roach and Sankar [I61J and Baker [I62] for

steady two-dimensional full potent al computations and

Chattot [163], Baker and Forsey [164], Sankar et al.

[165] and Holst and Thomas [120] for three-dimen-

sional full potential computations.

Two widely used AF schemes are now presented in

more detail. In the interest of brevity only two-dimen-

sional versions will be considered, both designed to

solve the conservative full potential equation given by

Eqs. (37. The first scheme is a reformulation of the

Peaceman-Rachford alternating direction implicit (ADI)

scheme and can be expressed by choosing N [from

Eq. (44)] as follows:

1 O,,4jon)Ci.i,NC_',_ = - -(_. -X_A;_)(_. -- - " (45)
);

where : is an acceleration parameter (to be discussed

shortly) and A_ and A i are defined by

.4i = t. J / _ 12 j \, J /i,i- l:2'

In the above expressions, the density' coefficients. _ and f_,

are defined by Eqs. (42a) and (42b1 and A1, A2 and J are

metric quantities defined similarly to the metrics in Eqs.

(31b). The ADI scheme represented by Eq. (45)is imple-

mented in a two-sweep format given by

Sweep 1:

_ oe.4_:3_)_, i _._,)LqS,.i ' 47a)

Sweep 2:

(_ - 0_,A ib,, )C','# = j]'.}. (47b)

In Eqs. (47a and 47b),(,I'i is an intermediate result stored

over the entire finite-difference grid and the residual Lc_I'#

is defined by Eq. (411. Sweep 1 consists of a set of tridiag-

onal matrix equations along the _-coordinate direction,

and sweep _"consists of a set of tridia_onal_ matrix equa-

tions along the J?coordinate direction. The construction

of this ADI scheme does not automatically provide the

necessary d_ temporal damping required to stabilize

supersonic flow regions. However. this type of term can

be included by adding

fl-lb_,.il_e and -T-fl,,ll';.i(g,r

inside the parentheses of the first and second sweeps,

respectively'. The double-arrow notation on these oper-

ators indicates that the difference direction is always

upwind, and the sign is chosen so as to increase the

magnitude of the matrix diagonal coefficient. The con-

travariant velocity component scaling used in the above

expressions provides a smooth transition from forward

to backward differencing when the flow direction cha-

nges sign. The fl¢ and ft, coefficients are constants speci-

fied by' the user.

The ADI scheme presented above is stable providing

0_e)_<2 and _I>0. Because the only condition for

stability on the 2 parameter, which behaves like the

inverse of the physical time step, is that it be positive, the

ADI scheme is said to have unconditional linear stability,

as expected for a fully' implicit scheme. The best strategy

for obtaining rapid convergence is to use a repeating

sequence of _. values. The small values reduce the low-

frequency errors and the large values act as a smoothing

mechanism, and thus, reduce the high-frequency errors.

A suitable sequence is given by

2k = _"\7-HH) , k = 1,2 ..... M, (48)

where M is the number of elements in the sequence and

_. and _H are the sequence endpoints corresponding to

the low- and high-frequency limits, respectively. In prac-

tice, :_L and _H are often "optimized" by trial-and-error

numerical experimentation. This typically is performed

only once for each code and grid size, as optimal values of

_.L and V.H do not strongly depend on solution character-

istics. For more information on the optimal choice of

these parameters, the interested reader is referred to

Catherall [166] where a detailed analysis is performed

for several AF iteration schemes.

Faster convergence can be obtained with the ADI

iteration algorithm. An estimate for the number of iter-

ations :\q,_ required to drop the error by No orders of

magnitude for solving Laplace's equation (with optimal

acceleration parameters) is given by [26]

Nit _ _ -- 0.645N_log _ , (49)

where A is the grid spacing used in the computation.

Comparing this estimate with those established in Eqs.

(35) and (36) for the line Gauss-Seidel and SLOR iter-

ation schemes, respectively', it is easy to see that the ADI

scheme is superior in convergence efficiency, being as

much as an order of magnitude faster for fine grid com-

putations.
The second AF scheme described is the so-called AF2

scheme, which was first studied in Ballhaus and Steger

[1]. This iteration algorithm was subsequently used to

solve the steady TSD equation by Ballhaus et al. [158]

and the conservative full potential equation by Hoist and
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Ballhaus [106]. The AF2 fully implicit scheme can be

expressed by choosing the N-operator of Eq. (44) as
follows:

1
mc_.j = - -(_ - 7_-.4,)!_._- 7,A[3,,)C'L_. (50)

3{

where {as with the ADI scheme) Ai and ,4 i are defined by

Eqs. (46) and _. is an acceleration parameter defined by'

Eq. (481. This scheme is implemented in a two-sweep

format given by

Sweep 1

• = =a L¢ io, (51::)

Sweep "_

(_a - g,. Ajg,, )Cr j =._.5. (51 b)

In Eqs. (51a) and (51b),f,5 is an intermediate result stored

over the entire finite-difference grid and the residual LoSI'j

is defined by Eq. (41). Sweep 1 consists of a set of bidiag-

onal matrix equations along the c_'-coordinate direction

and sweep _"consists of a set of tridiagonal matrix equa-

tions along the r/-coordinate direction. With the AF2

factorization, the {-difference approximation is split be-

tween the two sweeps. This generates a q_:,-type term,

which is useful to the iteration scheme in supersonic flow

regions as time-like dissipation. The split { term also

places a sweep direction restriction on both sweeps,

namely, in the negative _ direction for the first sweep

[Eq. (5ta)], and in the positive f direction for the second

sweep [Eq. (51b)]. Flow direction imposes no sweep

direction limitations on either of the two sweeps.

For curvilinear grid applications when the ,f direction

is not aligned with the local flow direction, additional

temporal damping terms aligned with the _l-coordinate

direction can be included by' adding -T-:efi_,, inside the

parentheses of sweep 2. Again, the double arrow notation

is used to indicate that the difference direction must

always be upwind, and the sign is chosen so as to increase

the magnitude of the matrix diagonal coefficient. The

parameter [; is a user-specified constant, which only

needs to be activated in supersonic regions of flow when

the flow direction is (to a significant extent) along the

_l direction.

Another form of the AF2 scheme that splits the 1/dif-

ference operator between the two factors is possible (see

for example the AF2 variation in Hoist [159]). This type

of AF2 scheme is attractive for some applications involv-

ing general curvitinear grids, e.g. airfoil or wing compu-

tations using "O" grid topologies. More recent imple-

mentations of the AF2 scheme for transonic potential

flow computations include South and Hafez [167] for

airfoil computations: Vadyak and Atta [168] for three-

dimensional nacelle analysis, Jialin [169] for three-di-

mensional axial-flow compressor flows; Hoist [122] for

chimera zonal grid applications: and Cosentino and

Holst [170], Cheung and Hoist [171], de Mattos [-172]

and de Mattos and Wagner [173] for analysis and design

of transonic wings. More on the use of transonic poten-

tial formulations in numerical optimization and design

applications will be presented in Section 3.10.

3.5. Convergence characteristics of SLOR. ADI and AF2

Numerical results comparing the convergence charac-

teristics of the two fully implicit algorithms described

above (ADI and AF2) with the classical SLOR iteration

algorithm are now presented. All three iteration schemes

are applied to the same artificial-density spatial-differ-

encing scheme for the conservative form of the full poten-

tial equation. A two-dimensional, 10%-thick, circular-

arc airfoil with small-disturbance boundary conditions is

used as a test case. The finite-difference grid is Cartesian

with variable spacing in both the x and y directions.

Both subcritical and supercritical cases are considered

(M,_ = 0.7 and 0.84). Pressure coefficient distributions

for these two cases are displayed in Fig. 15. Note the

perfect symmetry associated with the subcritical case and

the existence of a moderate strength shock at about 80%

of chord for the supercritical case. For more details about

these calculations see Hoist and Ballhaus [106].

Convergence characteristics for the subcritical case are

displayed in Fig. 16. All of the convergence parameters

for each scheme have been selected by a trial-and-error

optimization process. Based on a six-order-of-magnitude

reduction in the maximum residual and in terms of iter-

ation count, the ADI scheme is about twice as fast as AF2

and about 16 times faster than SLOR. However, the ADI

and AF2 schemes take about 50 and 30% more CPU

time per iteration than SLOR, respectively, which should

be considered when speed ratios based on the total

amount of computational work are desired. Convergence

-.8
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Fig. 15. Pressure coefficien'_ distributions from subcriticaI
(M, = 0.71 and supcrcrifical (M., = 0.84_ flow computations
about a 10%-thick circular-arc airfoil, taken from Hoist and

Ballhaus [106].
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Fig. 17. Maximum residual convergence history comparison for

the supercritical case, M_ = 0.84, taken from Hoist and Bal-

lhaus [ }06_.

characteristics for the supercritical case are displayed in

Fig. 17. Again, the convergence parameters have been

optimized by' a trial-and-error process. Based on a six-

order-of-magnitude reduction in the maximum residual

and in terms of iteration count, AF2 is slightly' more than

twice as fast as ADI, and about 11 times faster than

SLOR. The number of supersonic points (NSP) plotted

versus iteration number for the supercritical case is

shown in Fig. 18. The AF2, ADI and SLOR schemes

reach the final value of NSP in 29, 103 and 320 iterations,

respectively.

The AF2 scheme was relatively consistent in terms of

convergence speed for both cases. The ADI iteration

scheme, on the other hand, displayed remarkable speed

for the subcritical case, but was a disappointment for the

supersonic case. This is because the 4J_-type error term

produced by' the AF2 factorization is more suitable for

supersonic regions than the q_.-type error term resulting

from the ADI factorization. In fact, the _b_-type error

term has been shown to be destabilizing in the supersonic

region E81_.

[] ADI

o AF2

-- SLOR

I I I I I I I I I I I

100 200 300 400 500 600 700 800 900 1000 1100
Number of iterations - n

Fig. 19. Maximum RMS error convergence history comparison

for the supercritical case. ,,_.4_ = 0.84. taken from Hoist and

Ballhaus [106_.

The convergence histories displayed above involve

plotting residual versus iteration. Another more appro-

priate means of studying an iteration scheme's conver-

gence properties is to look at error versus iteration. Such

a plot is displayed in Fig. 19. In this case the error plotted

on the vertical axis is the RMS error in the surface

pressure coefficient, which is computed from

=[-1 ],eE4,,s ' (c;,- e.,)=

where c_, is the surface pressure coefficient at the ith grid

point and the nth iteration, f:p, is the surface-pressure

coefficient at the ith grid point taken from the tightly

converged solution, and NI is the total number of surface

grid points. By comparing the residual history curves

(Fig. 17) with the error history curves (Fig. 19), it can be

seen that reducing the maximum residual by a fixed

amount (for example by two orders of magnitude) for the

AF2 and SLOR schemes, does not result in equal levels of

error reduction. The SLOR residual drops very rapidly

initially and then levels off. The SLOR RMS error drops

continuously but very gradually. Therefore, at the "knee"

in the SLOR residual history curve, even though the
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residual has dropped by about three orders of magnitude,

the actual RMS error has dropped only one order of

magnitude. In contrast, both the maximum residual and

RMS error results for the AD1 and AF2 schemes are

nearly straight lines with about the same slopes.

This behavior is the result of two factors (Hoist and

Ballhaus [106]). First, the (optimized) ADI and AF2

schemes treat all error components equally well (approx-

imately), whereas the SLOR scheme (even in optimal

form) performs efficiently on only the high-frequency

error components, i.e., it is a good smoothing algorithm.

Second, it can be shown that the residual is a weighted

sum of all the errors present in a solution, but with

weighting factors heavily biased toward the highest-fre-

quency errors. Thus. in the earl}' stages of convergence as

SLOR is smoothing the high-frequency errors typically

caused by an impulsively started freestream initial condi-

tion, the residual drops rapidly, while the error, paced by

low-frequency components, drops slowly. As a result of

this behavior, the maximum residual should never be

used to compare the convergence properties of two dis-

similar iteration schemes. The RMS error is much better

suited for this purpose. In practice, using the maximum

residual to monitor convergence is the most convenient

method (since error is unknown). However, the conver-

gence criterion based on residual should be adjusted

(by experience) in accordance with the solution proced-

ure in use.

3.6. Muhigrid iteration schemes

The multigrid scheme was originally developed for

solving elliptic equations, but has subsequently been ap-

plied to a much wider range of problems, including

hyperbolic problems with shocks, time-accurate prob-

lems. and problems of mixed type such as those asso-

ciated with transonic flow. This scheme is actually a

convergence acceleration technique and requires a base

iteration scheme, e.g., SOR, SLOR, or AF. Multigrid-like

schemes have existed for quite some time, having been

first introduced by Fedorenko [174]. Since then, several

authors have analyzed the technique, including Bak-

hvalov [175], Nicolaides [176] and Hackbusch [177].

The most significant aspect of a multigrid scheme is fast

convergence. Fast convergence is produced by using a se-

quence of grids ranging from very coarse to fine. Each

grid is used to eliminate one small range of errors in the

error frequency spectrum, namely the errors of highest-

frequency supported on each grid. Many relaxation

schemes exist that work well on high-frequency errors,

e.g., most AF schemes with properl3' chosen acceleration

parameters. A suitable relaxation scheme is used on each

mesh to remove the high-frequency error. A desirable

aspect of this approach is that the high-frequency error

on the coarsest grid is actually the lowest-frequency error

existing in the problem. Because this usuall3 troublesome

tow-frequency error is efficiently dealt with on a coarse

grid, very little computational work is expended in re-

moving it from the solution. Thus, a tremendous conver-

gence rate enhancement is obtained.

Implementation of a typical multigrid scheme is now

described in general terms. Suppose a solution is desired

to the following equation:

Lh_ =.£

where L _' is a typical linear difference operator which

approximates a differential operator L on a grid asso-

ciated with the grid spacing h. The quantity flcontains the

problem boundary conditions. Let

q) = tt + C,

where u is an approximation to 49 and r represents an

error. Therefore, as the iteration scheme converges, u _ 4)

and v --* 0. The basic multigrid scheme can be expressed

by

2h hL2hv + Ih (L u --f) = O,

where L 2h is a finite-difference operator which approxim-

ates L on a grid associated with the grid spacing 2h.

instead of h, i.e., twice as coarse as the original grid. The

operator 12h is a restriction or averaging operator which

transfers values of the residual (Lhu -f) from the fine

grid to the coarse grid. After the coarse grid corrections

v are obtained, they are transferred back to the fine grid

using

u.... = u + l_hv,

where l_h is an interpolation operator. The process can

continue to coarser grids so that ultimately just several

grid cell widths span the entire domain of interest.

Brandt [178,179] presents early numerical applica-

tions of the multigrid scheme. In the latter reference

a good historical review of early multigrid schemes is

presented. The first use of the muttigrid scheme for trans-

onic calculations is presented by' South and Brandt

[-180]. In this study, numerical solutions of the TSD

potential equation for non-lifting airfoils are obtained.

The multigrid-enhanced-SLOR scheme is found to be

a factor of three faster than an optimized SLOR scheme

on uniform grids and a factor of two faster on stretched

grids. A primary difficulty involved the existence of

limit-cycle oscillations between several grids, thus inhibi-

ting convergence. This problem seemed to be the result of

insufficient smoothing of the high-frequency errors on

one grid before passing to the next coarser grid. South

and Brandt concluded that the SLOR base algorithm

used in their multigrid implementation did not have

uniform smoothing properties in both directions, espe-

cially for highly-stretched grids and suggested the Lise of

an ADl-type scheme as the base algorithm
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Another approach proposed by Arlinger [181] is to

refine or coarsen the grid in only on_: coordinate direc-

tion while doing line relaxation along the opposite direc-

tion, This technique produces convergence rate acceler-

ation hut does not take full advantage of the multigrid

philosoph.',. Another successful implemenlation of multi-

grid to transonic flo,a is the work of Jameson [182]. In

this work, the two-dimensional full potential equation in

conscrvati_e form is solved using multigrid with an AK

base iteration scheme. The Jameson multigrid algorithm

uses a recursive app,oach, instead of the adaptive ap-

proacln advocated by Brandt [17S.179]. In the adaptive

multigrid approach, the decision 1o proceed to the next

grid. cittner coarser or finer, is based on a convergence

rate criterion. If the solution residual is dropping slowly,

the iteration proceeds to coarser grids. If the solution

residual is dropping rapidly, the iteration proceeds to

finer grids. In _he recursive approach, a sinetc_ lnulti,,rid

cycle starts with a fine grid iteration, followed by _ill

iteration on the second finest grid, etc. This continues

until the coarsest grid is reached. Then the process is

reversed, starting with the coarsest grid and ending with

the second finest grid. Therefore. one mukigrid cycle

consists of one iteration on the finest grid and two iter-

ations on every other grid. If a fine grid iteration is

defined as a unit of work, then one multigrid cycle, using

the recursive approach, requires abom l i work units

(for two-dimensional problems) plus interpolation

operations.

Computed transonic airfoil resuhs produced by the

.lameson muhigrid scheme are displayed in Figs. 20

and 21. The pressure coefficient distribution for this case

qan NA('A 64A410 airfoil at M, =0.72 and z=0:l, is

displayed in Fig. 20. A moderate-strength shock exists at

about 60% of chord. Convergence histories for this case,

computed using different numbers of grids !from one

grid, i.e., no multigrid, up to live grids) are shown in

Fig. 21. Nmice tirol the maximum residual has been

reduced below 10 " {for the five-grid caseL which corres-

ponds to an eight order-of-magnitude reduction. "['his is

achieved in just 29 multigrid cycles lapproximalely 50

work units). The convergence rate parameter (CR), which

is defined as the mean reduction in the average residual

per unit of work. is also displayed in Fig. 2I for each

convergence historx curve. Increasing the number of

grids greatl 3 impro,,es the convergence rate.

Other researchers haxe used the muhigrid algorithm to

solve the full potential equation in a variety of applica-

tions including Fuchs [183]. Boerstoel [126]. 1)econinck

and Hirsch [184] and Sankar [185] for ta o-dimensional

calculations: Arlinger [186] for axisymmetric calcu-

lations, Volpe [187] for two-element airfoil computa-

tions: McQarthy and Revhner jib-:b:] and I{ro\vn [189]

for three-dimensional engine-inlet calculations:

Shmilovich and (aughey [t90] and ('aughe} [I91] for

Ihre_:-din_ellqi,:m:ll aing calcul_lti<ms: (hen el al. [192]
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Fig. 20. Converged airfoil pfe%t_rc coefficient distribution ob-
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for _ing-body calculations: Chen et al. [101] for fusel-

age-pylon-nacelle calculations with and wilhout power:

van de= \ooren ctal. [193] and van der Vooren and van

der \Vees [194] for wing and x_ing-body computations

aith special emphasis on acenralc drag prediction: ',ind
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Shmilovich and Caughey [195] for wing/body/tail com-

putations. The muttigrid-based procedure of Shmilovich

[196] designed to solve general geometry inlets at inci-

dence and yaw is quite interesting. It consists of a base
SLOR scheme that alternates between the streamwise

and normal-like coordinate directions and contains a di-

rect'inverse boundary layer correction procedure due to

Cebeci et al. [197]. Several transonic flows with bound-

ary layer separation are presented that demonstrate the

method's capabilities.

3.7. Other iteration schemes

Sankar and Tassa [157] have applied the strongly,

implicit procedure (SIP) introduced by Stone [2] to the

numerical solution of the full potential equation for un-

steady' transonic airfoil calculations. Additional steady

applications include those of Sankar et al. [198] for

transonic wing computations, Roach and Sankar [161]

for transonic cascade computations, and Sankar [185]

and Gordon and Arieti [199] for airfoil computations.

A multigrid-enhanced SIP approach is used in van der

Vooren et al. [t93] and van der Vooren and van der

Wees [194] for wing and wing/body computations. In all

cases the SIP solution algorithm displayed good conver-

gence characteristics as a relaxation scheme. In addition,

the SIP algorithm has the ability' to compute time-accu-

rate flow fields: see Malone and Sankar [200] for un-

steady,' airfoil computations and Sankar et al. [165] and

Sankar and Malone [201] for unsteady wing calcu-

lations.

South et al. [202] describe an algorithm called Zebra

II, which is highly, parallelizable and requires about the

same number of iterations to converge as SLOR. This

algorithm is an explicit or point scheme that mimics

full-plane SOR. Iteration schemes that have superior

convergence properties, and thus produce solutions in

a minimal number of iterations, are available. A few

examples include the conjugate-gradient methods of

Bristeau et al. [203], Glowinski et al. [204], Chattot and

Coulombeix [160] and Wong and Hafez [205] and the

minimum residual method of Wong and Hafez [206,108]

and Wong [207]. The work of Wong and Hafez [206]

provides an interesting discussion of iteration schemes

for solving the full potential equation. Results are pre-

sented for several schemes, including SLOR, two vari-

ations of the Zebra scheme, and conjugate-gradient

schemes with several types of preconditioning combined
with both SLOR and Zebra. These iteration schemes are

combined with two different spatial discretization

schemes including a finite-difference scheme and a finite-

element scheme. It is found that the combined iteration

schemes are superior to the standard SLOR scheme in

computational efficiency by, as much as a factor often for

subcritical cases and bv at least a factor of two for tough

transonic cases.

3.8, Space marching schemes

Up to this point only schemes that are designed to

solve transonic flows with subsonic freestream Mach

numbers have been considered. Another class of prob-

lems equally, amenable to full potential algorithms are

those with low supersonic freestream Mach numbers.

A central feature of this class of schemes is that the

solution is marched, i.e., without global iteration, from

upstream to downstream. Each cross-sectional plane

solution is transonic-flow-like in that both subsonic and

supersonic cross-flow Mach numbers may exist. Each

cross-flow plane is iterated until convergence. Then the

solution technique moves on to the next downstream

plane. Because there is no global iteration, these so-called

"space-marching" schemes are extremely efficient. For

the full potential formulation to be valid for supersonic

freestream flows, the resulting bow shock must be at-

tached, i.e., blunt body problems are generally not in-

cluded, and the normal component of the bow-shock

Mach number must be at or below a value of about 1.3

(see Fig. 6). Thus, sharp, thin bodies at small angles of

attack are generally the target application. If the body is

thin enough, e.g., a five-degree cone, at a small enough

angle of attack, e.g., 10 _ or less, freestream Mach num-

bers at or above two can easily be accommodated. An-

other characteristic of this type of flow is the existence of

local pockets of subsonic flow. Such a problem requires

a hybrid marching-relaxation iteration scheme.

Early full potential equation marching algorithms are

described in Grossman [208], Grossman and Siclari

[209], Siclari [210], and Siclari and Visich [141]. In these

studies the nonconservative full potential equation is

solved using an SLOR-like algorithm in each cross-flow

plane. Grossman [208] and Siclari and Visich [141] use

a conical-flow assumption to reduce the problem to two

dimensions, i.e., transonic flow in the cross-flow plane. In

conical flow all flow variables are assumed constant

along "conical lines", i.e., straight lines that pass through

the apex of the geometry. Thus, flow variable derivatives

with respect to the conical direction are zero. This com-

mon assumption has been used by others (Bradley et al.

[211] Sritharan and Seebass [212]) for solving the

conservative form of the full potential equation. This

approach, while retaining many features of three-

dimensional supersonic flow, has the limitation that only'

conical-type bodies can be analyzed. The other methods

presented above [209,210] are more general, utilizing

a conformal-type mapping for grid generation in each

cross-sectional plane, and thus, are generally applicable

for nonconical geometries. The work in Siclari [210] and

Siclari and Visich [141] is interesting in that shock fitting

is utilized to accurately compute shock waves, both the
bow shock and the cross-flow shock. In Siclari and Visich

[141] the shock-jump conditions used in the shock-fit-

ting scheme are nonisentropic (see Section 3.3), and thus
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closely model the Euler equations. Results presented in

the above references include cones, elliptic cones, and

a simplified wing-body configuration. Good agreement

with experimental surface pressures is obtained, includ-

ing the capture of transonic-like cross-flow shock waves.

providing viscous effects are not important. Additional

applications involving more complete geometries include

Walkley and Smith [213] for fighter forebodies with and

without canopies and Rose et aL [214] for wing-body

configurations. Computational times for this type of

technique range from a few seconds to a minute on

moderate-speed desk-top-type computers.

A space marching approach for solving the conserva-

tive full potential equation is presented in Shankar [112]

and Shankar and Osher [215]. In this approach a locally

iterated approximate factorization scheme is used to ob-

tain each cross-flow-plane solution. This scheme (pre-

sented now in more detail) is designed to soh, e the steady

full potential equation written in general coordinates

given by

+ _- + = 0, (52a)

p = 1 - _,f?,(Uc& + I/4,,, + W4,: - 1)

(52b)

The above full potential governing equation is the same

as Eq. (30a) except all the time terms have been elimi-

nated. The above density relation is the same as Eq. (30by

except the time terms have been eliminated and the
nondimensionalization is in terms of p_ and q_ instead

of p_ and a_. The metric and contravariant velocity

component definitions given in Eqs. (3lay and (31by are

still valid for Eqs. (52a) and (52b).

A suitable space marching scheme is developed as

follows. First, it is assumed that the {-coordinate direc-

tion is approximately' aligned with the stream direction,

and thus, this direction is the marching direction. Given

a solution at i, i - I, etc., the marching scheme is devised

to compute the solution at the (i + 1)st cross-sectional

surface. The first step in building such a marching scheme

is to linearize the first term in Eq. (52a). This is accomp-

lished by' noting that pU,.'.S =.f(4_) and by using a Taylor

series as follows:

pU + 7_(p<.U + pO4>)_A_ + O(A2), 53i
- i-1 = i

where Agoi = 4_- _ - q_ and the quantities ?oand U 0, are

operators given by'

I%- + !,l.... ,
p<,= - o_ +

(- C g
U_, = A_:-: + A_- + As_=.

(.7 oi7 o;

33

Substitution of the above two expressions into Eq. (53)

yields after simplification the final linearization for the

{-direction flux given by'

J Ji-1 _ 7 i + i A, aZ jD_

7-]_ + (A, - -_5--]_AA4),, (54)

where the only quantity in Eq. (54) that is evaluated at

i + 1 is in A4)_. All other quantities are evaluated at i. The

first term in Eq. (52a) is discretized using a first-order

upwind formula given by

pU' 1 [(pU'] (,oU'] I.
7A-_Lt,-7-),-, - < J ./,J

A second-order discretization is also presented in

Shankar and Osher [215], but is not discussed here. The

nonlinearization given by Eq. (54) must be used for the

C-direction fluxes at both i + 1 and i in order to maintain

conservative form.

To complete the formulation of the marching scheme,
linearizations for the other two terms in Eq. (52a) are

required. These linearizations are accomplished by, using

a variation of the artificial density scheme discussed in

Section 3.3. For example, the second term in Eq. (52a) is

evaluated using

A4,_
\7).---_LJ\_ + A_ + A_

_) a+ c_

The density coefficient _ used in the above equation is

similar to the density coefficient defined in Eqs. (42a) and

(42b). In this algorithm it is given by

Pi+ l,j + 1/2,_ = (1 -- I,l_,j-p [,r2.,i,.)/)j+ ]:2.k

+ •'-_.s+ _2k(P.i+2,.k + &-_+2,,._), (56)

where m and v are defined by

{_ when l,l.j+_.2.k>0,m = when l"i.s*_2._ < 0,

vi.j+_:._ = _ 1 - _ " - Ji.j+ 1,'2,k

The quantity l* appearing in the above equation is de-

fined by

{01 for(A2-V:.,'a2 >0 ellipticcrossfl°w,# = for (A2 -- V2,."'a2) < 0 hyperbolic crossflow.

With this definition ofp the density, coefficient upwinding

is smoothly switched on or off based on whether the
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cro.,,s-flm_ direction is elliptic or hyperbolic. All tile o-

derivatives appearing in Eq. !55i are centrally differenced.

The densh,, ',alues used in Eq. (56_ are computed in tv, o

_avs depending on the problem being solved. F or coni-

cal l]o'a problems, all density values are evalualcd using

the previous marclmlg plane i. For nonconical flow prob-

lems, the densit;' \alucs are initialized to the density

values in the pre_ious marching plane, and then updated

via local ilcration as the soh,tion :it i + I converges.

I'reatment of the third lerm appearing m Eq. {52a) is

similar io the second Icrrn juM discussed.

Next. the Iincarizations need to be combined to create

the tinal ilel-ation ,.chcmc used t(, a(lvallCe the >ohltion

from marching piano i I,., marching plane iT i. After

combination, simpliiication and factorizalion lhc follov,'-

ing iteration schcmr is obtained

'" : >-< ! £/;A_ F,? ' f; ,'_l ,I.k_ ' 1: ,v .*-",:J

,l_ +" 1 ( _.45 1 I" /'_.'t3

_\ here

fl 1

I;= - --1 1, --
' L"X/}:.I'. "

UI"

) ""=':( - 7 )-
11: - .I

(I _ := ,] -1 _, 0--'- "

E,..1, (571 Iv.is the Iorm

1.,rL: 5_/, = R.

where each of Ihc [aclors _.,I_ [Ive left-hand side represent

a set of scalar tridiagonal matrix equations. The inver-

sion of these m;,trix equations is achieved in a two-slep

sequence gi',en b\

d.,,(A(J,)' =- R. L:I=_'X,:;,J=iAd)):.

tol _11c cd-,mc m,rching scheme to hc stable, it can be

sht,\xn lhal the fo!lmving condition is required

•lj -w "-0
d-

This condition states fl]atthe marching direction must

remain supersonic for the marching scheme to bc valid.

Ifthe Math number along the marching direction e\er

dn,ps belov, .he. e',en thougl_ the total M:.tch nmnber is

supersonic, the ram-thing scheme wil} be unstable. See

Sh:tllkar and ()shcr [215] For a deri\'ation of this

marcMng stability condition and additional discussion.

13pical result obtained x_ilh the abme marching

schcm.c b. eix en m Figs. 22 and 23. The geomctr 3 used for

thi_, czt>,e _. : conic:lib c:trnbered wing-hod3 c.nfigura-

/

-/
A

/

%

Fig. 22. ('ross-sectional grid surrounding a co 1 c l) cambcl-cd
wing-be, d), configuration ttaken from ghankar and ()-;her

1-215]_.

I 10"82_

.3 ......... o._.. • ..e ..... _---'--"'o

,4 --

.5 1 I I i I
0 .2 .4 .6 .8 .0 1.2

Z TAN A

X

Fig. 23. Sin-face pressure coeflicienl clm]parismls for a c_micalh

cambered wing bod 3 geometry. M, =2. _'= 7.81 and I().X2 .

Itakcn from Shankar and Osher [215])

tion wilh u x,.ing leading edge sweep of 57 . The grid for

a typical cross-secti<,nal plane (generaled using the Sleger

and Sorensun [2t6] elliptiL' grid generation technique} is

presentcd in Fig. 22. Surface pressure comparisons _ith

experiment {token fiom Millet" et al. [217] are sh{,x_n in

Fig. 23. The resuhs arc presenled for: = 7.81 and 10.82

and AI, = 2/). Nole that tile cornpulalional-expcri-

menI:d comp_t]-isons are exccllcnI.
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Another possible characteristic of supersonic marching

problems, especially when the freestream Mach number

is not significantly above one, is the existence of

local "pockets" of subsonic flow. Such a problem can be

solved using a hybrid marching-relaxation scheme. The

marching scheme is used as long as the marching direc-

tion is hyperbolic and a local relaxation scheme is used

when the marching direction is elliptic. Such a scheme is

presented in Shankar et al. [218]. The key difference

between the pure marching scheme presented above and

the hybrid scheme is in the handling of the first term in

Eq. (52a). For the hybrid scheme this term is simulated

using

p U

\ J }-AgL\ J Ji+l

, -o,+l_(ou_

where each flux is linearized using the approach de-

scribed above, and 0 is a switching parameter given by

0 = if A1 - U2,"a 2 > 0.

When the local marching direction is subsonic the

scheme becomes a relaxation scheme, requiring a global

iteration over the entire subsonic region of flow. A sonic

solution is used as an initial condition for the solution

values required at i+ 2. See Shankar et al. [218] for

additional details.

3.9. Time accurate schemes

All numerical schemes reviewed thus far have been

designed for steady flow applications. The purpose of this

section is to explore numerical schemes designed to solve

unsteady problems. There are many unsteady applica-

tions in the aerospace field including flutter computa-

tions, aircraft maneuver applications and rotorcraft rotor

design. Unsteady transonic flow has several interesting

aspects that are different from steady transonic flows. In

unsteady flow, the motion of a body, e.g., pitching or

plunging of an airfoil or wing, strongly affects the result-

ant aerodynamic forces acting on that body, especially

when there are large shock wave excursions. Another

unique characteristic is the large phase difference that

may exist between the motion of an aerodynamic body

and the flow field response to that motion. This is prim-

arily due to the large time-scale variations that exist in

such flows. For more discussion of the physical aspects of

unsteady transonic flows as well as an early discussion of

time-accurate potential equation formulations, the inter-

ested reader is referred to Ballhaus and Bridgeman [219].

Additional information on the theoretical and numerical

solution aspects of such flows can be found in van der

Vooren and Schippers [220] or Sankar and Malone

[201].
Many formulational/a]gorithmic characteristics that

exist for steady potential equation applications also exist

for unsteady potential applications. For example, shock

wave capture is possible, but only for weak shocks; lifting

computations require the utilization of a vortex sheet,

across which the velocity potential is discontinuous; and

viscous effects, if important, can be added using bound-

ary layer correction techniques. There are other charac-

teristics that are different or have a different emphasis for

unsteady applications. For example, unsteady-flow far-

field boundary conditions are more sensitive to outer

boundary location. Depending on the physics of the

unsteady problem being solved and the length of time

integration, waves or disturbances can travel outward,

reflect back, and corrupt simulation accuracy. A simple

method for correcting this problem is to place the outer

boundary farther away, as much as an order of magni-

tude farther than in comparable steady flow problems.

Another remedy is to use special far-field boundary con-

ditions. There are two approaches; nonreflecting bound-

ary conditions or analytic far-field boundary conditions.

In the first approach, nonreflecting far-field boundary

conditions based on characteristic relations (see Engquist

and Majda [221,222]) are designed to absorb incoming

waves at the far-field boundary. Thus, these waves will

not refect back to contaminate the inner solution. In the

second approach, an analytic function describing the

far-field unsteady potential solution in response to cer-

tain changes in lift is derived and used as a far-field

boundary condition (see Fung [223]). Either of these

approaches allows the outer boundary to be placed much

closer to the inner boundary, saving grid points, com-

puter memory and computer time. Example applications

utilizing these two far-field boundary condition ap-

proaches to solve unsteady problems can be found in

Kwak [224] and Fung [225].

Another characteristic of unsteady potential flow com-

putations is that the circulation, i.e., the potential jump

across the wake cut, must be convected downstream in

a time-accurate fashion. This characteristic is required to

model the unsteady shedding of vorticity downstream of

any lifting surface. A relation of the form

Ft + uFx = O,

where F is the circulation and u is the local streamwise

velocity component, is used for this operation. This circu-

lation convection is the major unsteady influence for

low-frequency, sub-critical flows. A key approximation in

classical potential CFD methods is that F is constrained

to convect along a coordinate surface. This constraint

has historically resulted from transonic fixed-wing

applications for which potential CFD methods were

originally developed. For these applications the above
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convection model is a good simplification and causes little

error. See Steger and Caradonna [116] or van der Vooren

and Schippers [220] for more discussion on this point and

a derivation of the above circulation transport relation.

For time-accurate computations involving a forced

unsteadiness, e.g., a wing undergoing a pitch oscillation,

flo_ tangency boundary conditions at the wing surface

must take into account movement of the wing. This

is accomplished using the boundary condition given by

gq. (32).

One last characteristic important for unsteady algo-

rithms is the use of conservative form. For steady flows

conservative form is important for having the correct

shock location and strength. For unsteady flows conser-

vative form is also important for having the correct shock

location and strength, but also important for having the

correct shock speed. A key aspect of this is associated

with the numerical algorithm's time-term linearization.

Linearization for a steady algorithm is not as difficult as

for a time-accurate scheme, because only spatial terms

need be considered, and the key' issues are spatial accu-

racy and stability. In addition to these issues, time-accu-

rate schemes must also provide a time-term linearization,

which is stable, time accurate, and conservative. The

time-term linearization for the full potential equation is

difficult because the time term Pt is a rather complex

function of the dependent variable 4,. Nevertheless, there

are schemes that overcome these difficulties and provide

fast and accurate solutions to unsteady aerodynamic

problems using potential formulations, as will be seen

shortly,.

_s with the steady' flow case, the first successful imple-

mentations of unsteady transonic potential solvers are

associated with the TSD equation. Early two-dimen-
sional work in this area can be found in Ballhaus and

Steger [1], Ballhaus and Goorjian [226], Rizzetta [227],

Rizzetta and Chin [228], Houwink and van der Vooren

[229], Guruswamy and Yang [230], Edwards et al.

[231]. Traci et al. [232] and lsogai [233]. In these efforts,

the low-frequency TSD potential equation is solved for

a variety of airfoil forced motions, e.g., sinusoidal pitch or

plunge oscillation. Three dimensional solutions for the

TSD equation followed rapidly and can be found in

Caradonna and lsom [234], Borland et al. [235-237],

Rizzetta and Borland [238], Chattot [163], Isogai and

Suetsugu [239], Guruswamy et al. [240-242], Rodman

et al. [243] and Batina et al. [244-247]. In these efforts,

several different forms of the three-dimensional unsteady

TSD potential equation are solved for a variety of differ-

ent geometries ranging from isolated wings to nearly

complete aircraft. A supersonic freestream capability for

both steady, and unsteady, three-dimensional TSD ap-

plications is presented in Gibbons and Batina [248] and

Bennett et al. [249]. For supersonic freestream cases,

distances to the outer boundary can be reduced and

different hit-field boundary conditions are required.

Lastly, an unsteady three-dimensional approach that

utilizes entropy and vorticity corrections at shock waves

(see Section 3.3) is presented in Batina [140]. With these

corrections shock wave strengths and positions are in

close agreement with Euler equation solvers, even for

difficult transonic flow computations.

A major reason for developing an unsteady, transonic

aerodynamic analysis capability is to be able to predict

dynamic aeroelastic characteristics of a wing or airframe.

This is particularly important for transonic flow because

of the nonlinear behavior of flutter boundaries in this

speed regime. Dynamic aeroelastic applications require

a time-accurate coupling between the aerodynamics and

a suitable structural dynamics algorithm. Example

three-dimensional applications for which flutter compu-

tations are described include Goorjian and Guruswamy

[250] and Guruswamy et al. [251-258] in which the

XTRAN3S code is utilized and Bennett et al. [259] and

Silva and Bennett [260] in which the CAP-TSD (Com-

putational Aeroelastic Program-Transonic Small Dis-

turbance) code is utilized. A comparison of these two

codes is presented in Pitt et al. [261] for a variety of

fighter wing aeroelastic computations. The CAP-TSD

code is preferred because of its ability to model more

complex configurations. The first implementations of un-

steady full potential solvers can be found in Isogai [262],

Steger and Caradonna [263], Goorjian [117], Malone

and Sankar [200] and Shankar et al. [264]. In the first

work, the nonconservative form of the full potential

equation is used, but with a specially constructed artifi-

cial dissipation term that is in divergence form, mimick-

ing a conservative scheme. The latter efforts all utilize

conservative form. In all of these cases two-dimensional

computations involving simple forced airfoil motions are

considered. The first three-dimensional, unsteady full po-

tential studies can be found in Steger and Caradonna

[116], Sankar et al. [165,201], Isogai [265], Bridgeman

et al. [266], Malone et al. [267] and Shankar and Hiroshi

[268]. All of these efforts, except Isogai's work, which

uses the previously mentioned nonconservative form

with conservative artificial viscosity,, solve the conserva-

tive form of the full potential equation. Man), of these

time-accurate schemes have similar characteristics. Thus,

it is instructive to look at a particular scheme m more

detail.

As mentioned above, a particularly important and

difficult aspect of unsteady full potential algorithms is the

time tinearization, which must be stable and conserva-

tive. An example of how such a linearization is construc-

ted is now presented (see Steger and Caradonna [263]).

For convenience, only a two-dimensional version is de-

scribed. Noting the fact that p = p(4,), the following

Taylor series expansion can be written:

cpi

P = P° + _v,i:-rio(4,- _o) + 0(4, - 4,o)-', /58)
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where the "0" subscript is used to indicate a "nearby"

known state of the solution, e.g, the solution at the

previous time step. The derivative ofp with respect to 4; is

a non-commutable, differential operator derived from

a two-dimensional version of Eq. (8) and is given by

_4, :,2. _,_ + _x_ + 4,,_ .

Substituting Eq. (58) into the time term of the unsteady

full potential equation [Eq. (4)] yields

_V 2-(? g g'l 7 g

_L.o ,' ;j =

+ _(:,4,_/+ _ p0 - + 0(¢ - e0)". {59)

Assuming that _b - 4)0 is small, the error introduced by

expanding p is second order and therefore, is no larger

than that generated by a typical second-order-accurate

space-differencing scheme. The above time linearization

is conservative and linear in the velocity potential, and

thus achieves both of the important goals required of

a time linearization.

A complete time-accurate iteration scheme for advanc-

ing the velocity potential solution from one time level

n to the next n + I that utilizes the above time lineariz-

ation is given by

I /12 _
I + h(0%.,&_ + 4",'..,Q.) " " -- _(&oi+ _,2._&-

+ G&,j-I:2 }) q),.j - 0c_)= ,.., (60)

where h is the time step, fl = pc-7 and RT.j is the nth-

iterate residual defined by

]I

R[j = _/,(f/i', - P'i',7 ') 4- (c/)i',i - ff)_,) l

n- 1

h_n - 1 n- n- 1 .... 1}

fl,,

172 _ ~ _* _ '-z n --a" n

+ _ GP_. _:,j _ + 6,,Oi j+ _.'2o,.)dDu.
(61}

In Eqs. (60) and (61}, Q. and {5_ are standard central

first-difference operators and {5.,,&_,,&'_,and _,. and stan-

dard backward or forward first-difference operators in

the x and y directions, respectively. The _+ _,z.j quantity,

appearing in Eq. (61) is taken from the artificial density

approach previously described in Section 3.3 [see Eqs.

37

(42a) and (42b)]. This term is used to provide the upwind

influence required to stabilize an}' supersonic regions of

flow that might appear during the time-accurate iteration

process.

In order to avoid costly non-narrow-banded matrix

inversions, the iteration scheme given by Eq. (60) is ap-

proximately factored using an ADI-type factorization.

The resulting iteration scheme is given by

El + h05"_ 3_ h2- ".... ]-- fl,-q,a_pi+ t .,2,j_,"

xIl+hO_. _4 h2_ q. .-'-] ,, 1 d)") ".,, . fl_,,:},.j+,:2o,, {0_7 -.,..; = R_./,

where the first bracketed term represents a set of tridiag-

onal matrix inversions along the x direction, and the

second bracketed term represents a set of tridiagonal

matrix inversions along the y direction. Extension of this

scheme to a nonorthogonal, mapped coordinate system

invoh, ing three spatial dimensions is straightforward and

is described in detail in Bridgeman et al. [266].

Recent rotorcraft applications utilizing the conserva-

tive full potential equation can be found in Steinhoff and

Ramachandran [2693, Ramachandran et al. [270,271]

and Bridgeman et al. [272] where an unsteady full poten-

tial formulation with vortex embedding is used. The

fundamental problem with rotorcraft flows is that the

shed wake remains in the rotor vicinity for a long time.

This determines the spatial and temporal distribution of

loads and ultimately the rotor performance and acoustic

characteristics. The method of vortex embedding permits

such computations because it removes the grid-coordi-

nate convection constraint that is typically associated

with time-accurate potential computations. This is ac-

complished by decomposing the velocity into two com-

ponents given by

q = gq) + q,,. (62)

The first part is the standard velocity potential gradient,

and the second part is a specified rotational velocity field,

q,., which contains the shed wake circulation and can be

highly localized. This approach is actually a generaliz-

ation of the standard differencing scheme that is used on

any potential-flow wake cut. In the latter case the differ-

encing across the discontinuous wake sheet actually has

the same form as Eq. (62). The only difference with

vorticity embedding is that the %. distribution is 5-6 cells

thick and is not constrained to a computational-domain

coordinate surface. With the velocity vecwr definition

given by Eq. (62), the full potential equation is given by

p, + V{OV_)= - V.(pq,.),

which is the original full potential equation with an

added forcing function. Specification of q, can take on
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several forms. In Caradonna et al. [273] it is specified as

the incompressible velocity field induced by a two-di-

mensional free vortex. The two-dimensional assumption

is valid for this study because the problem being solved is

a parallel blade-vortex interaction (BVI) problem, i.e.,

the wake-vortex core is assumed parallel to the on-

coming blade. For more general applications, qv can

be specified using a thin, well-defined sheet. Nonzero

values of q, need exist only near the sheet, which is

a thickened representation of the rotor wake that serves

to produce the proper shed circulation distribution asso-

ciated with the wake. in this approach, the location of

the sheet is computed using a deformable carpet of

shed markers. These marker locations can be computed

by means of a Lagrangian convection approach, or

the 5, may simply be specified using experimental
measurement.

Additional recent work utilizing unsteady full poten-

tial algorithms can be found in Bridgeman et al.

[274,138,145], Chen and Bridgeman [146], Strawn and

Tung [275] and Strawn and Caradonna [276]. In these

references three-dimensional transonic flow computa-

tions about rotorcraft rotors are described using a con-

servative full potential approach. The first four references

include viscous effects and a nonisentropic shock wave

correction designed to more closely model the Euler

equations (see Section 3.3). The viscous effects are in-

cluded using one of two options: a two-dimensional mo-

mentum integral method that uses a "strip" approach or

the three-dimensional finite-difference boundary layer

equation approach of Van Dalsem and Steger [277].

Typical unsteady rotor results from Bridgeman et al.

[138] showing surface pressure comparisons for both the

isentropic and nonisentropic approaches are presented in

Fig. 24. The experimental data are from the Army 7 × 10

Tunnel at Ames Research Center. The results are for an

untwisted, rectangular, NACA 0012 rotor blade with an

aspect ratio of 7.125, an advance ratio (_l) of 0.246 and

a tip Mach number (MT) of 0.763. The advancing rotor

blade solution is displayed at a fixed radius near the tip

(r/R = 0.876) for six different azimuthal stations (0 = 30,

60, 90, 120, 150, and 180°). As the blade advances a shock

wave forms, grows in strength and finally disappears at

q, = 180 c. Generally, both computations are in good

agreement with experiment. However, the nonisentropic

result moves the shock wave upstream, in better agree-

ment with experiment, especially at the stations where

the shock is strongest.
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Fig 24. Surface pressure comparisons for an untwisted, NACA 0012 rotor blade at six different azimuthal angles. AR = 7t25,
!+ = 0.246. Mr = 0.763, c R = 0.876. taken from Bridgeman et al. [138].
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3.10. Design methods

So far only analysis methods utilizing nonlinear poten-

tial formulations have been examined. In analysis the

geometry, the freestream flow conditions, and all bound-

ary conditions are completely specified and the goal is

to obtain the flow field. In design the situation is more

complex because of the large variety of approaches that

are available. In one approach the surface pressure distri-

bution is specified, and the goal is to obtain the geometry

that produces this pressure. Still other design approaches

seek geometrical changes that produce optimal aerody-

namic performance, e.g., minimum drag-to-lift ratio. The

whole field of aerodynamic design and optimization is

complex because each approach may have variations

based on the applicable speed regime, the governing

equation formulation being used, and/or the analysis

method being used. The purpose of this section is to

present a brief survey of design methods that utilize

a nonlinear potential governing equation approach for

transonic aerodynamic design. For the more general

topic of aerodynamic design and optimization, the inter-
ested reader is referred to AGARD [278] or Dulikravich

[279,280].

3,10.1. Indirect methods

The first design method class to be discussed is called

the indirect method. In this approach the designer does

not have precise control over either the geometry or the

solution. One example of an indirect method is the hodo-

graph approach, which involves transforming the full

potential equation such that the independent variables

become the velocity components. In the hodograph plane

the governing equation is linear, and thus, solutions can

be constructed using the powerful idea of superposition.

However, transformation back into the physical plane

can lead to difficulties as some solutions may not have

physical meaning. An additional drawback of the hodo-

graph method is that only shock-free solutions in two

dimensions can be obtained. The hodograph method has

not been used widely in recent years and will not be

discussed further. For more information on this ap-

proach the interested reader is referred to Boerstoel

[281] and Bauer et al. [71].

Another example of an indirect design method is the

fictitious gas approach first devised by Sobieczky et al.

[282]. In this approach the governing potential equation

is modified in the supersonic flow regime so as to retain

an "elliptic" nature over the entire "transonic" flow do-

main. This may be accomplished in a number of ways

providing the scheme maintains both local and global

conservation of mass. The simplest approach is to set the

local density to the critical value of density p* whenever

the flow becomes supersonic. Thus, assuming an ap-

proach based on the two-dimensional conservative full

potential equation, the supersonic flow regime is soh, ed

using

p* I"' 1/

where the latter equation is the inherently elliptic

Laplace equation mapped to general coordinates. In sub-

sonic regions the traditional full potential computational

procedure is unchanged. With this approach the entire

domain is elliptic, and solutions obtained will be shock-

free. Once a solution with the fictitious gas model is

obtained, the sonic line information is saved.

The next step utilizes the sonic line as initial data and

a hyperbolic marching scheme to generate a physically

valid solution in the supersonic region of flow. In two

dimensions this scheme is typically the well-known

method of characteristics, e.g., see Dulikravich and

Sobieczky [283]. In three dimensions a more general

marching scheme based on the full potential equation is

utilized, e.g., see Yu [284]. Once this solution is generated

the original aerodynamic shape wetted by supersonic

flow will no longer be a stream surface in the new flow

solution. Thus, a new aerodynamic shape in this region

must be computed by finding the stream surface that

connects the upstream and downstream sonic points at

each wing station. Finally, the last step in this approach

consists of testing the modified aerodynamic shape using

the original method in analysis mode. The resulting solu-

tion should be shock free or nearly shock free. The

fictitious gas method has been used for a large number

of applications including airfoil and ,x'ing design by

Sobieczky et al. [282], cascade design by Dulikravich

and Sobieczky [283] and wing design by Yu [284], Fung

et al. [285] and Raj et al. [286].
There are two difficulties with the fictitious gas ap-

proach. The first is that shock-free designs are not always

possible for all combinations of initial geometry and

freestream flow conditions. If such a set of conditions has

been chosen the supersonic marching solution may not

converge properly. The second difficult3, is that the

marching problem for the supersonic flow domain is not

well posed in three dimensions, i.e., small changes in the

initial data can produce large changes in the final solu-

tion. This difficulty is most severe for small aspect-ratio

wings involving large gradients in the spanwise direction.

See Fung et al. [285] for more discussion on these latter

two points.

3.10.2. hTverse methods

The inverse method in aerodynamic design seeks to

determine the aerodynamic shape for a specified surface

pressure distribution, i.e., the "inverse" of the normal

analysis approach. Sometimes this design approach is

called the surface design method. An advantage of this

approach is that it offers direct control over aerodynamic
forces and moments (through specification of the surface
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pressure). In addition, by utilizing proper constraints on

the adverse pressure gradient, a degree of control on

boundary layer separation is also available, even for

inviscid implementations. The biggest difficulty of the

inverse design method is selecting a pressure distribution

that will achieve the best aerodynamic performance for

a given set of constraints. Clearly, experience helps in this

area, but knowing what is good aerodynamically and

(at the same time) does not over constrain the inverse

method and prevent convergence can be a problem.

The inverse design method was first implemented

using a two-dimensional TSD approach by Steger and

Klineberg [287] and Langley [288] and a two-dimen-

sional full potential approach by Tranen [289], Carlson

[72], Volpe and Melnik [290] and Volpe [291]. Sub-

sequently, extensions to three dimensions have been

made by Shankar et al. [292,293] for the TSD equation,

by Henne [294] and Garabedian and McFadden [295]

for the nonconservative full potential equation, and by

Shankar [--385] for a conservative full potential approach.

A good discussion of early inverse methods for transonic

airfoil and wing design, comparing and contrasting vari-

ous characteristics is given in Slooff [296]. More recent

applications for the inverse design approach include

Gaily and Carlson [297] and Ratcliffand Carlson [--298]

where the TAWFIVE analysis code of Street [97] is

modified for the wing inverse design problem, Takanashi

[299] where a wing design method based on a residual-

correction concept is presented, Carlson and Weed [300]

where a wing design method is developed using a Car-

tesian-like grid system, Malone et al. [,,301] where

a method is applied to transonic nacelle design, Hassan

and Charles [302] where a method is presented for heli-

copter rotor design, and de Mattos and Wagner [173]

and de Mattos [172] where a method is used for both

wing and wing/fuselage design.

Although implementation details vary from approach

to approach, the basic inverse design method has several

common steps. To gain insight into this class of design

methods, details from the implementation of de Mattos

and Wagner [173] are now described. For brevity only

an airfoil algorithm is presented using the two-dimen-

sional conservative full potential governing equation

given by Eqs. (37). For this presentation the _ and _7coor-

dinates are assumed to be along and away from the

airfoil surface, respectively. The first step in the inverse

design procedure is to generate an analysis solution using

the initial geometry. Second, a modified velocity poten-

tial along the airfoil surface is computed using the specified

pressure distribution. This is accomplished by converting

the specified pressure into a specified speed using

Cp ]specifie d

which is derived from the density-speed relation, the

speed of sound definition and the steady Bernoulli equa-

tion. The specified speed can be related to the velocity

potential using its general coordinate definition

= u°¢_ .....qspecified + l/ _,

where the n superscript is used to indicate the nth design

iteration. In order to achieve the specified surface pres-

sure, it is assumed that a perturbation in the velocity

potential A¢ is required. To this end the above relation

can be written as

+ (v" + Av")(¢;; + A¢,]),

which after dropping higher-order perturbations and ap-

plying the surface condition V = 0 becomes

2 _ (q,,}2qspecified

a¢_ = ,_+_ - ¢_ 2o'"

Using this relation and the assumption that the leading

edge value of the velocity potential does not change,

modified surface velocity potential values downstream of

the leading edge can be computed.

The third step in the inverse design approach is to

compute a new global solution with a new airfoil sur-

face boundary condition. That is, instead of solving

a Neumann problem involving flow tangency at the

airfoil surface, a Dirichlet problem is solved. The newly

computed velocity potential is used as the Dirichlet

boundary condition.

In general, the new global solution will have a nonzero

value of V at the airfoil surface. The fourth inverse design

step is to use this nonzero value of V to compute

a change in the airfoil geometry. A formula to achieve

this can be derived from dy/dx = Cy/O__. This reestab-

lishes flow tangency at the airfoil surface. Once the airfoil

shape has been changed the whole process starts over

with step one and continues until a suitable level of

convergence has been achieved. As pointed out in de

Mattos and Wagner [173], it is important to underrelax

the shape changes that are implemented in this algorithm

using a relation of the form

m

v "÷ _ = co)'"" _ + (1 - o))y",

where y"" _ is the initial updated value of)' before under-

relaxation, y"+ 1 is the final value of y used to update the

airfoil shape, and _o is the relaxation factor that must be

below one.

One last point regarding this technique is in order. It

has to do with trailing edge closure. In general, if this

issue is not addressed, the above described inverse design

approach will produce an airfoil with an open trailing
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edge, or even worse, a trailing edge with negative thick-

ness. To keep this from happening a function a(x) is

added to the airfoil y-coordinate distribution after each

design iteration. This function is given by

where the quantity &o is the airfoil trailing edge thick-

ness and x/c is the normalized distance along the airfoil

chord. The problem of trailing edge closure is a common

one among inverse design methods and must be ad-

dressed in order for sensible results to be obtained.

An example result fi-om an inverse wing design method

taken from Gally and Carlson [297] is presented in

Fig. 25 for an initial wing with NACA 0012 airfoil sec-

tions. The initial pressure distributions, user-specified

target pressures and the final design pressures are pre-

sented for two different wing span stations, 30 and 70%

of semi-span. At both stations the new pressures are in

close agreement with the target pressures. The upper-

surface shock has been eliminated or considerably

weakened at both stations.
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Fig. 25. Comparison of initial, target and final design pressures
using an inverse transonic wing design procedure, taken from
Gaily and Carlson [297]. (a) 30% semi-span station. (bl 70%
semi-span station.

3.10.3. Numerical optimization design (gradient methods)

Numerical optimization using gradient-based methods

(GM) in aerodynamic design has received much attention

in recent years. The reliability and success of gradient

methods is based on smoothness of the design space and

the existence of only a single global extremum. A good

review of gradient methods used in aerodynamic design

is presented by Reuther [303]. The general idea asso-

ciated with this broad class of methods consists of the

following steps. First. determine the optimization's objec-

tive, e.g., minimization of the drag-to-lift ratio, minimiz-

ation of the least-squares error between the actual and

a prescribed pressure distribution, etc. Second, the ge-

ometry to be optimized must be parameterized. This

parameterization must completely describe the geometry,

(or the portion that is to be optimized) and must lend

itself to discrete variations that can be independently

modified. In many (but not all) gradient method imple-

mentations it is advantageous to parameterize the ge-

ometry with the minimum number of parameters that

will still completely describe the applicable design space.

Examples of aerodynamic shape parameterizations are

given in Hicks and Henne [304] where a series of"bump"

functions is used or Burgreen and Baysal [305] where

a series of B-spline control points is used.

Mathematically, the dependence between the objective

f and the decision variables resulting from the design

space parameterization x can be expressed as follows:

./(x) =.fix,, x, ..... x_, r ... , x_),

where K is the total number of decision variables used in

the design space discretization. In addition, problem con-

straints must be identified, e.g., minimum wing thickness,

minimum wing volume, etc. These can be included in the

objective function as a penalty or included as separate

inequality constraints. Different gradient methods allow

the inclusion of constraints in different ways.

The third step is to compute the direction in the design

space (away f,'om a specified initial condition) that min-

irnizes the objective. This is achieved by using (for

example)

X,,+ I = X n __ g,,_7fl(X,,)T, (63)

where x" is the decision variable vector from the previous

iteration, x "+_ is the improved decision variable vector,

s" is the nth-level step-size vector, and Vf(x") T is the

nth-level column vector of sensitivity derivatives. Eq. (63)

represents the simplest type of gradient method, often

called the steepest decent method. Many others are avail-

able including conjugate gradient, Newton or quasi-

Newton approaches. The interested reader is referred to

Luenberger [306] or Reuther [303] for general details in

this area. Additional comments regarding specific optim-

ization packages that have been used in aerodynamic

optimization can be found in Vanderplaats [-307] for
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CONMIN (constrained-function minimization), Gill

and Murray [308] for QNMDIF (quasi-Newton method

with difference approximations for the derivatives),

Gill et al. [309] for NPSOL (nonlinear programming

solver), Vanderplaats [310] for ADS (automated

design synthesis) and Cheung [311] for IIOWA (parallel

optimization with aerodynamics). The technique for de-

termining sensitivity derivatives is a key item in any

gradient-based design approach and has received much

attention. The simplest approach, often called the

"brute-force" or finite-difference method, consists of us-

ing finite-difference formulas to compute sensitivities of
the form

c_f ./(x_, x2 ..... x_ + =k..... x_)-f(xl, x: ..... xk ..... xK)
"7"-'-=

X k f_k

where ck are the user-specified difference intervals. Both

values off used in the above equations numerator are

computed using a separate CFD simulation from an

appropriate analysis code. Care must be taken in this

approach to make sure that each solution is adequately

converged, usually with tighter convergence than in an

analysis computation. If not, the lack-of-convergence

error can cause large errors in sensitivity derivative com-

putation and difficulties in the optimization process. If

a design problem using the above approach has K deci-

sion variables, the sensitivity derivative computations for

each design iteration will require K + 1 function evalu-

ations. Specifically, K + 1 complete CFD analysis solu-

tions must be computed, one solution for the unpertur-

bed or baseline geometry and K solutions corresponding

to the K perturbed geometries. After the sensitivity deriv-

atives have been computed and the steepest descent di-

rection is determined, a "line search" along this direction

is required to determine values for the step size vector s_.

One approach for this operation is to compute several

values of fusing different step sizes and then compute the

minimum value of fusing a curve fitting procedure (see

Cheung [312] or Reuther [303]). Other line search pro-

cedures utilized for aerodynamic optimization are de-

scribed in Melvin et al. [313].

Overall, gradient-based methods for typical aerody-

namic optimization problems require from several iter-

ations to several tens of iterations to converge (depending
on the method used and the number of decision vari-

ablesi. Thus, the total number of CFD analysis solutions

required for this type of optimization approach can easily

number in the thousands. Because nonlinear potential

methods require little computer time per solution relative

to Euler or Navier-Stokes approaches, a potential-based

finite-difference optimization approach may provide

suitable turnaround times for the design environment

whereas a similar approach based on the Euler/

Navier-Stokes equations would be too expensive. Exam-

ples utilizing the finite-difference gradient optimization

method in conjunction with nonlinear potential solvers

include Hicks et al. [314], Kennelly [315] and Ghietmi et

al. [316] for airfoils; Haney et al. [317], Hicks [318],

George et al. [319] and Cosentino and Holst [170] for

wings; Destarac et al. [320] for wings and wings with

propulsion effects; Reneaux and Allongue [32t] for heli-

copter rotors; Cheung and Holst [171] for wing-body

applications; and Aidala [322] for wing-body-canard

configurations.

Other methods for evaluating sensitivity derivatives

that seek to reduce the large computational cost asso-

ciated with the finite-difference method are the quasi-

analytic (QA) method of El-banna and Carlson [323,324]

and Arslan and Carlson [325] and the method based on

control theory presented by Jameson [326,327]. In the

QA approach the sensitivity derivatives are obtained by

solving large sparse systems of matrix equations. The

elements of these matrix equations are developed by

taking analytic derivatives of the numerical or discrete

governing equations (with the aid of a symbolic manip-

ulation program). In this approach an entire set of sen-

sitivity derivatives is obtained with the solution of

a single matrix equation. Sensitivity derivatives obtained

using this approach are in good agreement with those

obtained from the finite-difference approach. More work

needs to be completed in this promising area to assess

this method's abilities in actual design optimization

applications.

The second method involves the numerical solution of

an adjoint equation derived using controI theory (see

Reuther [303] for a derivation of the adjoint equation for

the full potential equation in two dimensions). The op-

timization method using the adjoint approach has the

following steps: First, solve for the flow field using a typi-

cal analysis method. Next, solve the adjoint equation for

the sensitivity derivatives. Using these sensitivity deriva-

tives and a suitable gradient optimizer, obtain an im-

proved design with updated decision variables. Finally.

repeat all steps until a sufficient level of convergence is

achieved. This approach is superior to the finite-differ-

ence approach for generating sensitivities because all the

sensitivities are obtained (no matter how many there are)

by solving one adjoint equation, with a cost on the order

of one flow field solution. Thus, for design problems

containing a large number of decision variables, the cost

savings for this approach over the finite-difference ap-

proach is significant. Because any number of decision

variables can be used in the adjoint approach without

significantly increasing the sensitivity derivative com-

putational cost, it is natural to utilize very large numbers

of decision variables in an attempt to improve optimiza-

tion results. The cases that are reported in Jameson

[326,327] follow this strategy by utilizing ever 5' surface

grid point as a decision variable. In the case of wing

optimization, this produces as man 5, as several thousand

decision variables. As described in Reuther [3(/3]
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this increased design space resolution creates several

difficulties. First of all, the large number of decision

variables can introduce high frequencies into the flow

solution causing difficulties for the flow and adjoint sol-

vers. The high-frequency aspects of the design space can

cause local extrema to appear, which make proper con-

vergence of the gradient optimizer difficult. In the work

of Jameson [326,327] a gradient smoother is introduced

to solve this problem by eliminating (or smoothing) high-

frequency details. Although this approach works, it elim-

inates (at least some of) the apparent advantage of being

able to efficiently handle a large number of decision

variables. It also introduces an undesirable aspect: the

dependence of the optimization algorithm on a smooth-

ing process. In contrast, the adjoinl-based gradient op-

timization method of Reuther [303] utilizes a smaller

number of decision variables following the design space

parameterization of Hicks and Henne [304] and pro-

duces good results without a gradient smoother. A typi-

cal result using a gradient optimization algorithm is

presented in Section 3.11.3.

3.10.4. Numerical optimization design (genetic algorithms)

The last optimization method discussed in this section

is called the genetic algorithm (GA} approach (or some-

times the random search approach). The basic idea asso-

ciated with this approach is to search for optimal solu-

tions using the theory of evolution. During solution iter-

ation (or "evolution" using GA terminology) the decision

variables are manipulated using various operators (selec-

tion, combination, crossover, mutation) to create new

design populations, i.e., new sets of decision variables.

General details of such genetic algorithms and the speci-

fic operators used in them can be found in Goldberg

[328], Schwefel [329] and Davis [330]. Each design is

evaluated using an objective-like "biological fitness func-

tion" to determine survivability. Constraints can easily

be included in this approach. If a design violates a con-

straint, its fitness function is set to zero, i.e., it does not

survive to the next evolution level. Because GA optimiza-

tion is not a gradient-based optimization technique, it

does not need sensitivity derivatives. It theoretically will

work well in non-smooth design spaces. The ability to

arbitrarily mutate allows a GA optimization approach

(theoretically) to find the global extrema in design spaces

containing several or perhaps many local extrema. A dis-

advantage of the GA approach is expense. In general, the

number of function evaluations required for a GA algo-

rithm exceeds the number required by a finite-difference-

based gradient optimization. Example applications util-

izing potential-based flow solvers in the context of GA

optimizatien can be found in Quagliarella and Della

Cioppa [331] for airfoil applications, Vicini and Quag-

liarella [-332] for multi-point and multi-objective airfoil

applications and Obayashi et al. [333] for multi-disci-

plinary optimization of transonic wings.

Two simple optimization examples involving two-

dimensional linear aerodynamics that compare the GA

approach with a typical gradient-based optimization

method (GM) are now discussed. The first comparison

(taken from Obayashi and Tsukahara [334]) is for the

optimal design of a subsonic airfoil using a linear panel
method to evaluate the aerodynamic "fitness" of each

design variation. The lift is maximized under airfoil thick-

ness and angle of attack constraints. Linear combina-

tions of four existing airfoils are used to establish the

design space. This produces a very general but "noisy"

design space. For this case the GA and GM algorithms

produce optimized lift coefficient values of 2.48 and

1.716, respectively. The GA and GM algorithms require

972 and 159 function evaluations, respectively. The GM

algorithm results are from the best of four separate runs
that each utilized different initial conditions.

The second example (taken from Bock [335])is for the

optimal design of a symmetric, sharp-edged airfoil at zero

lift in supersonic flow. The wave drag is minimized at

a fixed freestream Mach number of 1.732 under a thick-

ness constraint. The aerodynamic "fitness" is evaluated

numerically using shock-expansion theory. The airfoil

shape is represented as the superposition of a series of five

Legendre polynomials plus a triangle function, yielding
a total of six decision variables. For this case the GA and

GM algorithms converge to drag coefficient values of

0.0308 and 0.0281, respectively. The theoretical optimal

value of the wave drag for this case is 0.0279. The GA and

GM algorithms require about 300 and 60 function evalu-

ations, respectively. The design space in this case is much

smoother than in the previous case and is (apparently)

a key reason for the superior results produced by the GM

algorithm. In addition, (as stated by the author) lack of

convergence of the GA scheme to the theoretical value of

minimum drag may be due to some inappropriate aspect

of the mutation algorithm that is utilized.

Based on the above results, the following observations

can be made. The GA approach is computationally

expensive, requiring 5-6 times the number of function

evaluations required by the (already expensive) GM ap-

proach. The GA approach, which demonstrates tremen-
dous results in the first example, especially in view of the

noisy design space, is a disappointment in the second.

This suggests more work is required to properly evaluate

this approach for aerodynamic design. In particular,

characteristics of the GA approach for more realistic

nonlinear design problems need to be developed

3.11. Methods developed for complex geometTi!'

applications

The purpose of this section is to review transonic full

potential methods that have been developed for complex

geometry applications including complete or nearly com-

plete aircraft. This area can be divided into four major
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sub-areas according to the flow field discretization ap-

proach: chimera zonal grids (sometirnes called o-_erset

grids), patched zonal grids, Cartesian unstructured grids

and unstructured grids. Each of these discretization types

is sketched in Fig. 26 for a simple two-dimensional body

inside a rectangula) domain. The chimera zonal grid

approach utilizes tv, o or more grid zones that are gener-

ated separately and overlap in a general fashion. The flow

tield solutions m each chimera grid are connected during

flow solvez iteralion using a general interpolation scheme

tFig. 26a 1.The patched zonal grid method typically utiliz-

es se;'eral to manx separate grid zones that interface

a]ong common boundaries IFig. 26bi. Each of the indi-

vidual grids in the chimera and patched zonal grid ap-

proaches typically utilizes a structured grid composed of

quad,ilaterals m tx_o dimensions or hexahedrons in three

dimensions. The unstructured Cartesian-grid approach

utilizes a grid composed of squares in two-dimensions or

cubes in three dimensions. Each Cartesian grid cell can

be discontinuously subdivided into smaller cells in re-

,_,ions of high flow gradient {Fig. 26c!. The unstructured

grid approach typically utilizes flow-domain discretiz-

ations composed of triangles in two dimensions or tetra-

hedra m three dimensions {Fig. 26d).

For the unstructured grid approaches the flo_a solver

is typically a finite-_olurne or finite-element method

(FEM). For the zonal grid approaches the flow ,;oher is

typically a finite-difference or finite-volume method

Since most of the methods highlighted m previous sec-

tions of this review have been in the latter categor 3. the

FEM approach (or more generally, unstructured grid

methods) ',','ill be primaril 3 highlighted in this section.

Selected complex geometr 3 results are presented to allow

a complete evaluation of the full potential approach in

aircraft analysis and design.

3./1.1. Zonal grid methods

For the purpose of this reviex_, zonal grid methodolog3

has been organized into tx,,o calegories, chimera and

patched methods. The primary zonal grid method utiliz-

ed in CFD applications is the chimera grid approach.

which will be emphasized in this section. The zonal grid

approach (in general) and the chimera zonal grid ap-

proach (in particular) are versatile techniques for obtain-

ing aerodynamic results for complex configurations

including reasonably complete aircraft. In the chilnera

zonal grid approach a separate boundar 5 conforming

grid is generated about each major feature of a complex

aerodynamic configuration. For example, for a transport

aircraft consisting of a wing/body pylon/nacelle, a total

of five grid zones might be used. one for the near field

surrounding each of the major geometric features (wing.
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body, pylon, and nacelle) and a fifth background grid to

"connect" the near field grid zones to freestream. Each of

the component grids is generated without regard to any

of the other component grids. Each boundary grid point

receives its boundary, condition information from either

freestream, flow tangency (assuming the solver is invis-

cid), symmetry or from another component grid using

interpolation. Some of the grid cells generated for one

component of the geometry may have grid points that lie

inside other components of the geometry. Computations

at such points are handled by an "IBLANK array multi-

plier", which has a value associated with each grid point.

IBLANK is equal to one for points in valid flow regions

(called field points) and equal to zero for points in invalid

or "blanked out" flow regions. Blanked-out grid points

that lie immediately adjacent to field points are called

fringe points or sometimes intergrid boundary, points

(IGBPs). Fringe points require interpolated information

from a neighboring grid zone every, iteration. Blanked

out points that are not immediately adjacent to field

points are called hole points. Computations proceed in
an identical fashion at all grid points, which permits

efficient code vectorization and/or paraltelization, but

because of the IBLANK array, multiplication, only grid

points in valid regions of flow (i.e., field and fringe points/

get updated as the iteration proceeds.

Earl?, work in the development of the multi-zone

approach for transonic potential calculations can be at-

tributed to the grid embedding approach used for solving

the TSD potential equation, e.g., see Boppe [66], Boppe

and Stern [67] and Shankar and Malmuth [64]. In these

references the TSD equation is solved for the flow about

various three-dimensional configurations including

a reasonably complete aircraft. Early work in the devel-

opment of the multi-zone overset approach applied to
numerical solution of the full potential equation can be

found in Atta [336] for airfoils, L_ [337] for wing/body

geometries and Atta and Vadyak [338] for wing/nacelle

configurations. Formalization of the chimera approach

with the IBLANK array' logic can be attributed to Steger

et al. [339], Benek et al. [340] and Dougherty et al.

[341]. In these references the scheme was first given the

name "chimera" and basic concepts of the approach were

developed. Applications consisted of relatively simple
two- and three-dimensional simulations, primarily in-

volving the Euler equations.

The chimera and patched zonal grid approaches have

been further developed for solving the full potential equa-

tion by Ecer and Spyropoulos [118] for wing-body com-

binations: by Epstein et al. [342] for nearly complete

aircraft configurations; by Lifshitz et al. [343,344] for

airfoils inside wind tunnel walls with viscous effects; by

Hotst [345,122,346] for a variety of three-dimensional

applications including a wing/body/nacelle; and by San-

kar et al. [347], Bangalore et al. [348], Berkman et al.

[349] and Moulton et al. [350,351] for a variety of hybrid

applications. In the latter area the term "hybrid" refers to

the use of different flow solvers in different grid zones.

This is a particularly interesting aspect of the zonal grid

approach that demonstrates a significant amount of flex-

ibility. Typically, the flow field in an inner grid zone, e.g.,

next to the geometry's surface, is solved using

a Navier-Stokes approach. The flow field in an outer grid

zone is solved using a full potential solver. The detailed

viscous flow field physics associated with shock-

wave/boundary-layer interaction or dynamic stall is han-

dled with the Navier-Stokes solver and the relatively

simple outer flow region is handled using the computa-

tionally efficient full potential approach. A factor of two

reduction in CPU time with no degradation in solution

accuracy relative to a fully, Navier-Stokes approach is

reported in Sankar et al. [347].

An example result (taken from Holst [346]) using

a chimera grid approach to compute the transonic flow

about a wing-body-nacelle geometry is shown in Figs. 27

and 28. The chimera grid for this geometry consists of

five grid zones, including a wing, a fuselage and an outer

Cartesian-like grid. In addition, there are two nacelle

grids, a body-conforming grid surrounding the nacelle

surface and a stretched Cartesian grid that surrounds

the inner nacelle grid. A hyperbolic grid generation code

(see Steger and Rizk [352] or Chan et al. [353]! is used to

construct the wing, fuselage and inner nacelle grids, while

a simple algebraic grid generator is used to construct the

other two Cartesian-like grids. A cut approximately

through the vertical nacelle symmetry plane showing the

wing grid and the two nacelle grids is displayed in Fig. 27.

Fig. 28 shows Mach number contours on the wing upper

surface, on the fuselage in the vicinity of the wing/fuselage

intersection, and on the upper and outboard portions of

the nacelle. The results are computed at M_. = 0.9,

= 2° using a moderate-sized grid consisting of 689,591

total points. The shock wave structure of this solution on

the wing, fuselage and nacelle surfaces is clearly visible.
A shock extends across the entire aft portion of the upper

wing surface from the tip to the root and continues

around the upper fuselage. The interference shock caused

by the close proximity of the wing and the nacelle is

clearly visible on the aft nacelle surface. This computa-

tion required about 9 rain of CPU time on a high-end

workstation running at about 70 MFLOPS.

3.11.2. Unstructured grid methods

Examples of earl?' unstructured grid FEM approaches

used to solve the full potential equation for transonic

flow are presented in Glowinski et al. [354], Ecer and

Akay [355] and Vigneron et al. [356]. A particularly

interesting FEM issue for transonic potential flow solu-

tions is how to stabilize supersonic regions of flow. An

artificial dissipation term that leads to an upwind influ-

ence is typically used. Deconinck and Hirsch [111,184],

Akay and Ecer [1 I01 and Eberle [114,115] all use a form
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Fie_ _,."" Seleclcd grid surfiices from the u'inebod,,_ _ nacelle chimera _arid used in ihe Fie._ _g'_ cc_mpula_.icm !nacelle _cmic'<l] plane of
symmetryi, taken from Holsl [346].

Fig. 2S. Mach number conlotlrs st'lo\ving the computed solution c}n selec,.cd ,,tuf_lce_, cff the' uing b_,d3-mlcclie configuralion.
\l. = 0'a.._ = 2 . taken from Hoist [34(,].

of" the artificial densi*x scheme presented in Section 3.3.

Results from a varier_ of artificial density schemes ap-

plied in a finite clement context are presented and com-

pared in Habashi and ltafez [132]. Applications in these

sludies _:_.nge fronl_ airfoils and cascades to \_ing.,,. Still

:_nolhet + super+onic tlou stabilizatkm rc, utit]e for t++tt_s-

onic flou applications is presented and demonstrated in

Brisieau el :.tl. [203,357] and Pe_'iaux [358]. In [his ap-

proach a lcasl-squares conjugate gradient method is used

to solve the finile elemel_l equatiol>; The least-squares

tunctioual D, modified to include a pena]t 3 rune'ion

th;t! hecc,_cs _e:v large fc_r cxp',_r>qk_n sl>,cks _i',hcui1
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becoming large for normal compression shocks. This

effectively takes on the role of an artificial dissipation

term in stabilizing supersoMc regions of flow. Of all eay

studies in the area of full potential FEM applications Io

transonic flow. the work of Heckman [359] is of particu-

lar note. In this stud}' a transonic flow simulation about

a nearly complete business .jet consisting of a wing/

body/nacelle is presented. This demonstrates the capabil-

ities of the FEM method and the unstructured grid

approach for handling complex geometries.

Recent studies exploring the theoretical aspects of the

FEM appr,,ach :l',e presented in Wong and Hafez [205],

Glox_inski [3{i0] and Bergcr ct al. [361]. Other recent

application_ of unstructured grid methods for solving the

full potential equation include Whitehead and Newton

[362] for cascades, Bristeau et al. [363] for a variety of

applications, Mehta and Jayachandran [364] for axisym-

metric bodies. Kinney et al. [365] and Kinney' and Hafez

[139] for wings, and Kinney et al. [366-368] for nearly

complete aircraft.

To gain more insight into the characteristics of the

FEM approach for solving the full potential equation,

additional details following the recent work of Kinney

et al. 1-365] are now presented. The governing equation

utilized for this implementation is written in steady Car-

tesian coordinates [Eq. (9i], and the density relation uses

,o,, q, nondimensionalization. Kinney et al. 1,-365] util-

ize a flux-based upwind procedure to stabilize supersonic

regions of flow in the conlext of a general unstructured

grid approach, l:ollowing the approach of Osher et aI.

[129_] an elemental flux is defined using

__ i0 if M < 1.

Pq = "(pq - tl'!:q_: if M //- 1,

where _'/and q" are sonic values of the density and fluid

speed, respectivet3. With this flux definition the density is

upwinded usim,._.

where A is a backward difference operator :rod _tqrt is

a limiter function defined bv

7'(r} = max[minlr, 1}, 0],

and r is the ratio of flux gradients at i - 1 2 and i + 12.

At a flow extremum r will be negative causing Lp = 0.

Thus, a dissipative first-order scheme is produced. A_ all

other flow points a second-order-accurate upwind

scheme is realized.

The FEM discretization used by Kinnex el al. [365]

can be expressed by multiplying the upwind Cartesian

form of the full potential equufiem b\ :t lest func'don

N and then by integrating over an appropri;_le c'_nlrol

volume _2

- [,5( c/,.,N ,: + d,,.N, + #:,..,\":l] d.Q

[ f ([, g#, "n)N dS = O.+

where S is the boundary, of £2. The surface mtegrul in the

above equation is zero at all solid surfaces and is replaced

with an appropriate condition in the far field. Ihe velo-

city potential and test function N are assumed to varx

linearly' across each FEM cell. To complete this formula-

tion upv,,ind fluxes are needed for each tetrahedron cell

center. This is accomplished by tirst storing upwind

fluxes at each node. which are obtained from a piecewise

average of the fluxes in the upwind cells.

A simple two-dimensional example is sh<mn in [-ig. 29.

"['he upwind flux in cell D is computed using the centered

fluxes in cells A and B {both upwind to cell Dt. The

formula used for this computation is given by

(/,q}_, = If, q),, -- [ r'_),, - aq,_),, - hb,q),d.

where a and h must sun1 to one and arc computed from

the local velocity veclor and geomelric _lspecls of the

7' = f' -- -- =-(pql,
qcs

f64)

where s is the space coordinate along the stream direc-

tion. The partial derivative with respect to s is defined by'

__ II (" -- I" [ -- It' (" __

--(pql =- --(pqt +- + =21Pq).?s q ?.\ q _7"ll)q) q
(65}

The up_xind density evaluation scheme given by fiqs. 164)

and 165) is verx similar to the artificial density scheme

described in Section 3.3. see in particular Eq. (43a! and

(43b). Follox_ing ll_e work of Jameson [309] a second-

order-accurate numerical evaluation of Eq. !64i can be

written. For b]evity it is given in one dimension as

m

I*_ll]}e - 1 2 -_"{_'lJ'}r " ] 2 -- _{7)d_ '" I : _L Cp I*)AI_Ig_ , 1 2*

q

/
Fig. 29. Sketch _*['_!t3pic:d tx_o-dmmi>i:_n:q up\,.imt fly., _'ulcw-
Iation for cell D in terms of Ihe cen_cred flu,:es in tl_c _tp_ md

cells A and t:_
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i_,c'al _:clt. This is just a first-order-at-curate example with-

out flux limiters, For file complete flux computation

:tlgorilhnq sec Kinncx ctaI. [365].

Once file sp:_[ial discretization is complete an iteration

scheme must bc constructed that remains hyperbolic in

supersonic regions of fim_ trod elliptic m subsonic regions.

(urei'ulh e\aluated up\rind-biased temporal damping

leems of tile form _/_,, must be added for stability in

supcr,,onic rc_}ons..Just like other potential ileraliorl

schemes {see .l:tmc>on [Sl_ for Inert discussion on thi_ last

poin[L A Ncv.lon linearizatio,] is performed ilbotl! Ihe

prex ious iteration im,,lving onlx ihc firsl-order lec-lYlswith

!he second-_,rdcr tern> lagged one iteration. The rcsuh of

the [incarizati,m is a large sparse linear system thai must be

solved during each heration using an appropri;ile linear

>dxer. ,\ t3pic:a] tran<oI-lic x_ing computation using this

approach on a grid c_msisting of ?9.302 node_, and 542.62..4

tel.i-ahcdr:l YeqtliYc,, abotlt 22 rain ofCPIr time and I2 MW

<*fmctn_rx on n single processor of a Crav C-00 computer.

A signilicant ad\anl:ige of lhe unstructured grid ap-

proach i> the tlbilit\ to, perform compuIalions on complex

_eometries rckltixelv casil\, i.e.. with this approach the

',olum¢ grid generation issues are simplified R_r complex

•,hapes. \n example taken from Kinney et al. [36g] shelv-

ing a grid and ,urfiice sOltllion lOT _! geometricall 3 con]-

piete transport airc1alz is displayed m Fig. 30. The aircraft

configurtHicm consists of a wing. body. p31on, nacelle and

a xerl/c;l] tail. Fhc simulation conditions consist of a frce-

slFeanl Nl:lch l]{lmber t,I ().CN and a lift coeMcient of 0.44.

Nolo the line grid resolulion on il]e aircraft surface in

lie. 30a. In Fig. 30b. thc surface contours for [he pressure

coci_icienl ;Hc displ:Lved. Nt,te the strong trarisonic shock

<m the :il1-parl <*[the trine tipper surlltce.

; /l.>' { n_ts'_/_IIHvU (_,u-svviaP grid mct/'oU._

.-'ks ahead', presented_ un.structured (artesi.:ii_ grid

mctllod_, utilize: grids composed of equal-sized squares in

tx__,dimuusi<,p.s <,rCClt,:ll-sizcd cubes in three dimensions.

Sotuticm :l,l:_plixit 3 is achicxed by subdividing ouch grid

cell in ci ;egic)n ,>f higl', solution gradienl inl_ l>ur smaller

CClucll-si;,cd SCf!t:t!'eb-fc!l" l\\O dimensions or into ci<ghl
silia]ler cqtl;i]-_,iled ctll_es for three dimensions. Grid ad-

ctpt:ltiou c{111:{lso ]*iV'perforillc'd hi regions where tI'lc'

7vc>mc_.l} is highl3 ctlp, ed and thtis likel\ to prodticc

l:lIgc' scdtttion g]adfcnls This process of cell subdivision

13picail 3 ,_<mfinncs for .,cveral le\cls until :.111accurac\

rcqLmCmcm i> achiexcd or until a predelermined max-
iIl]tlm /ltilllbcl id" subdi\isions is till:tined. The subdix i-

Sitlll pYtik'CS.> _C!lcI'Lll:.'x discontinuotts cell sizes between

;idiLlCell[ cc]l_,, t-_tll iic\ c.'Y lllOFe than LIt\\ o-E*-one tc_cl of

di,,cc>ntinui(\. The [lo\\ sol\ cr discictizaticm scheme, t)p-

it:ill\ of ihc i-FXI xmietx, is implemented to handle the

<tdiaccnt u,'[] di,c<mfiliuitx In adciitioi-i. (:t]-Ic>ia]_ _i-ic]
ceil. Ilttll 1GIJ;'-,c:Cl '<1[] aerodynamic Stll'f<lcC FCSLIlt ill ii-

',C_tl];.i[ ',-eli-, ihti{ I]K[>[ LttsO be halldled within the fl:.lllle-

,-,_,rL ,,! c!i.' ti 'xl ,'.]!cult Thi_ :!ppr,._:!c]_ fc,r handlin<_,

(a)

/

{b)

Fig. 30 Solulion aboLnl a 13pie:i] twin-engine transporl aircraft

in the transonic flow regime using the unstruclured FEM ap-

proach. '_I . = (L78. E'i - 044. taken from Kinney el ai [36.k]

!:t] 5_tll-f<lcU gl'Kt. {b} Stu'face presstn'e cocflicicm contours

complex geometries is perhaps tlle most general and

easiest to implement of all the approaches utilized in

CFD Its case of implementaliol_ and generalh) are de-

fixed hom the simple I'llallner in which the intersection

between an analytica]l 3 defined Cartesitll] grid al]d all
:trbiti-;lr'_ tJt_l)-def]ned geomelr} can bc comptlled. Fhc
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biggest disadvantage of this approach occurs when a flow

field gradient exists at a 45 ° angle with respect to the grid,

e.g., the gradient along a swept-wing leading edge. In this

case the grid must be refined in two (or sometimes even

three) directions to resolve the gradient.

A number of unstructured Cartesian grid full potential

applications have been presented in the literature for

a variety of transonic flow problems. Early applications

can be found in Johnston et al. [370,371] and Wedan

and South [372] for simple geometries. In these studies

the basic theoretical aspects including irregular cell

treatment at boundaries are emphasized. Another un-

structured Cartesian approach used for solving three-

dimensional inlets is presented by Brown [189]. In this

study the nonconservative full potential equation is sol-

ved using a finite-difference multigrid scheme. A recent

Cartesian unstructured grid method for solving the full

potential equation based on a Newton-Krylov-Schwarz

scheme is studied in Cai et al. [373]. This type of method

employs a domain decomposition FEM approach and

thus is suitable for parallel computer implernentation.

Total solution time for transonic flow cases is reported to

be six times larger than for subsonic cases. A recent

approach utilizing the unstructured Cartesian grid pro-

cedure, that has been extensively developed and used

for many applications, is the approach used in the

TRANAIR code. The theoretical aspects of the

TRANAIR method including the FEM discretization

procedure are described in detail in Rubbert et al. [374],

Young et aL [375] and Bieterman et al. [376]. Numerous

complex geometry applications utilizing TRANAIR have

been reported in the literature. A few of these include

Cenko and Piranian [377] for store loads prediction on

fighter aircraft, Ridlon et al. [378] for static aeroelastic

analysis, SenGupta et al. [379] for unsteady aerodynam-

ic and flutter computations, Madson [380] and Goodsell

et al. [381] for fighter aircraft computations, Chen et al.

[382] for engine-airframe integration applications with

and without power, Madson [383] for supersonic flow

sonic-boom computations and Jou et al. [384] for aero-

dynamic design optimization.

Computational costs associated with the TRANAIR

program for typical transonic analysis computations in-

crease approximately as O(NlZ), where N is the number

of elements used in the problem (Young et al. [37511.

A typical transonic computation consisting of 200,000

elements requires about 3500 s of CPU time on a Cray

X-MP computer for a tightly converged solution. This

consists of about 1000 s of setup time (including grid

generation) and about 2500 s for flow solution time. The

memory requirements for TRANAIR increase approxim-

ately as O(N). For a typical transonic computation con-

sisting of 200,000 elements the memory requirement is

just over 50 million words.

A typical result from the TRANAIR code taken from

Jou et al. [3847 is presented in Fig. 31. This example

shows TRANAIR's complex geometry handling

capability in the context of a propulsion-airflame-

integration design optimization application. Fig. 31a

shows Mach number contours on the upper surface of

a transonic wing in the vicinity of a low-mounted

nacelle before design optimization. Note the existence

of a transonic shock emanating from the strut-wing

juncture. Fig. 31b shows the same configuration after

design optimization modifications have been made. As

can be seen the upper-wing-surface shock caused by

a propulsion interference effect has been removed in

Fig. 3lb.

4. Concluding remarks

Numerical solution of nonlinear potential equations

for transonic cruise analysis and design has received

much attention within the CVD research community' in

the last 20-30 years and has reached a mature level

of development in most application areas. This review

describes the key historical milestones in this develop-

mental process and provides a quantitative description

of existing nonlinear potential equation simulation capa-

bilities. Throughout the review computational results

with experimental comparisons are presented to highlight

key discussion points and to demonstrate method capa-

bilities.

Specific summarizing comments from this review are

presented as follows:

(1) To begin, this review presents a detailed description

of several nonlinear potential formulations with em-

phasis on the full potential equation. This includes
a discussion of derivation assumptions, boundary'

conditions, transformation techniques and conserva-

tive versus nonconservative issues. These formula-

tions are all isentropic and irrotational. Nevertheless,

shock waves can be captured using a nonlinear po-

tential numerical algorithm with good agreement to

the more exact Euler equations providing the shock

waves are weak, i.e.. the shock-normal component of

Mach number just upstream of a shock wave should

not exceed about 1.3.

(2) A variety of authors have demonstrated nonunique

solutions for the conservative full potential equation

for two-dimensional airfoil applications. The

nonuniqueness manifests itself in the form of multiple

lift values for a single angle of attack. The nonunique-

ness only exists over a narrow range of freestream
Mach number for transonic flow conditions. It has

not been demonstrated for typical three-dimensional

computations in an), Mach number range, and thus.

represents only an academic concern as the vast

majority' of nonlinear potential flow applications are

three dimensional in nature.
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Fig. 31 Math number o:mlc, urs on flae wing upper surface m the vicimtv c,f a n,accllc showing numerical sohJtimls bck_rc 'and _fflcr
optimizam,n. Itlkcn from Jou el al. [3_R4] ia) Before design optimization. {b! After design optimization.

i3i A simple and eas._-to-inctude nonisentropic potential

l'iox_ correction procedure is available and has been

dem¢m,-,tratcd in a varictx of steady and unsteady

fioa applications. One variation of this correction

pruccdurc, which requires an algorithm change only

at shock waves, typically corrects the shock wave's

strength and position producing good agreement

with corresponding Euler solutions, even for shocks

that xiolate the weak shock wave assumption. Other

variations atIlo_ corrections h_r both entropy and

vorficit_. In one application the nonisentropic cor-

rection procedure i> used to eliminate the nonunique-

ness of tt/e conservative full potential equation for

airlk>il computations.

14) The main current application area for nonlinear po-

tentia! fv,rmulations is transonic cruise analysis for all

types of aeru.,,pace vehicles, especially transport air-

craft. Olher important application areas include ro-

torcraft rotor analysis, including the effects of

a modeled rotor wake: transonic cruise design and'or

optinai_",_tion especially the minimization of wing:'fu-

",e!_<c ;tnd xxing fuselage pylon nacelle intc,ference

(5l

effects: aeroelastic computations including the pre-

diction of flutter boundaries for transonic wings: and

analysis of forcbody or slende, wing body configura-

tions for low supersonic flows. Many of these ap-

plications include a direct viscous correction proced-

ure utitizmg either a momentum integral or a full

boundary layer equation approach.

There are many different algorithms in use k_r solx-

ing nonlinear potential equations. Generallx. an al-

gorithm consists of a spatial discretization scheme.

which determines spatial accuracy, and an iteration

scheme, which determines steady-state convergence

efficiency ifor steady problems) or time accuracx lk_r

unsteadx problems). Typical spatial discre_ization

schemes include an artificial viscosit3, upwind flux or

artificial density upwinding method cast in the fi'ame-

work of a finite-difference, finite-volume or finite-

element approach. Iteration schemes include classical

relaxation methods, e.g.. SOR or SLOR, and more

recently developed schemes, e.g., approximate factor-

ization, multigrid, minimum residual or c_m,iugate

gradient methods. Space marching algorithms are
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also used for problems with supersonic freestream

flows. In this type of algorithm the cross-flow plane

solution is obtained via a local iteration scheme that

resembles a two-dimensional transonic flow relax-

ation algorithm. Then the three-dimensional solution

is obtained without global iteration by marching

downstream. The outer bow shock is obtained via

a shock capturing or shock fitting scheme as the

algorithm is marched downstream. In one applica-

tion a hybrid approach is presented that utilizes

a marching scheme in supersonic flow regions

coupled with an embedded local relaxation scheme

for subsonic pockets of flow.

(6) Nonlinear potential methods are used extensively in

design and optimization. With their relatively short

turnaround time on high-end desktop computers,

the)' are ideally suited for the repetitive parametric

variations required for the design environment.

Methods reviewed in this section include indirect,

inverse, gradient optimization and genetic optimiza-

tion methods. Inverse and gradient optimization

methods are both well established and utilized heav-

ily. Genetic optimization methods, which are quite

expensive, but theoretically work in noisy design

spaces with multiple local extrema, are just beginning

to be explored.

(7) A variety of nonlinear potential methods have been

extensively developed for simulating the flow over

geometrically complex configurations. These methods

include various zonal-grid approaches (both patched

and chimera), unstructured approaches and Cartesian

unstructured approaches. The unstructured ap-

proaches are generally more accommodating in the

treatment of complex configurations, but are less com-

putationally efficient. Several complex geometry ap-

plications involving propulsion airframe integration

with propulsive effects are demonstrated.

(8) Three-dimensional nonlinear potential solver CPU

times are difficult to quantify because there are many

contributing factors that may cause large variations.

A few of these include the grid density level, config-

uration complexity, numerical scheme variations (es-

pecially the iteration scheme) and the discretization

approach. However, most three-dimensional nonlin-

ear potential solver CPU times range from 1 min to

1 h on current high-end computer systems. The

smaller run times typically involve coarse-grid struc-

tured approaches for simple configurations and the

larger run times involve fine-grid unstructured ap-

proaches for more complex configurations. Although

there are few quantitative head-to-head comparisons
between different formulations, the cost for perform-

ing three-dimensional transonic flow simulations

based on the full potential formulation is typically an

order of magnitude less than for a comparable simu-

lation using the Euler equations.

5. Recommendations for future work

Despite the advanced state of development for numer-

ical solutions of the full potential equation, there are

several areas that require improvements. First, geomet-

ric-handling computer software must be more flexible

and automated to a higher degree, minimizing (or even

eliminating) the amount of human intervention required

to move a new CAD geometry into the CFD environ-

ment. Of course, this is not just a full potential issue, but

an area of improvement required for all CFD formula-

tions. Advances in this area are largely paced by develop-

ments in surface-geometry representation and surface

grid generation. Nevertheless, enough research needs to

be conducted in the full potential arena so that new

geometric handling improvements are absorbed by the

full potential research community.

Full potential analysis and design methodologies need

to be better integrated into design environments, espe-

cially environments with a hierarchy of tools. The aero-

space vehicle designer should be able to choose between

more expensive Euler/Navier-Stokes formulations when

the physics dictates and the schedule and budget allow or

approximate but faster potential formulations when

schedule and budget dictate and the physics allows. This

process should be performed in a seamless fashion using

universal surface and volume grid generators and univer-

sal post processing software.

Optimization methodologies should be researched.

The genetic algorithm approach is extremely promising,

but largely undeveloped for aerodynamic optimization

problems. Obviously, this is because of its inherent ex-

pense and lack of knowledge for how to apply genetic

algorithm theory to aerodynamic and/or multi-discipline

design. The same situation existed for gradient-based

optimization methods fifteen years ago and now with

improvements in sensitivity derivative computation and

a 100-fold increase in computer power this technique is

widely accepted for aerodynamic design and optimiza-

tion. As design spaces become more detailed and include

more disciplines, the genetic optimization approach may

provide an attractive alternative for optimization. Utiliz-

ation of a fast full potential analysis capability in con-

junction with genetic optimization may provide an at-

tractive research approach to help develop genetic op-

timization methodologies.

Full potential analysis tools should be more com-

pletely integrated into the conceptual design environ-

ment. Because they are quantitative (for at least

cruise conditions) and fast, potential methods could

pi-ovide improved parametric aerodynamic results for

many conceptual configurations very efficiently. For

example, utilizing newer parallel computers a wing_fusel -

age parametric variation consisting of 1000 transonic

flow cases might require only about 10-15 rain of CPU

time.
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Unsteady applications utilizing the full potential for-

mulation should be more completely developed, espe-

cially those applications that are untenable using more

complete formulations. A good example of this is the

helicopter blade-vortex-interaction application.

Hybrid applications involving the full potential formu-

lation coupled with other formulations is an important

area that needs additional research. For example, utiliz-

ation of the fast full potential formulation in outer re-

gions of flow to drive convergence and the Navier-Stokes

formulation near all surfaces to capture viscous effects

could produce accurate separated-flow physics at a frac-

tion of the cost.

The nonuniqueness problem associated with numer-

ical solutions of the conservative nonlinear potential

formulations for two-dimensional applications, which

appears to be formulational and not numerical in nature,

needs to be explained.
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